System transfer speed test

Application Note
Contents

1 Introduction
 1.1 Definitions and Abbreviations 2

2 What to expect
 2.1 Performance .. 2

3 Code overview
 3.1 Digitizer mode of operation 4
 3.2 Code parts ... 4
 3.2.1 Source files .. 4
 3.2.2 Flow .. 4
 3.3 Tools .. 4

4 Running the application
 4.1 Configurable parameters 5
 4.2 Test case setup report 7
 4.2.1 Default setup 7
 4.2.2 Configured setup 8
 4.3 Reporting during run 9
 4.3.1 Status flow .. 9
 4.3.2 Periodic report 9
 4.3.3 Indications ... 9
 4.4 Interpretation of final results 11
 4.4.1 Passed test ... 11
 4.4.2 Failed test ... 12

Document History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Section</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA1</td>
<td>2019-02-25</td>
<td>-</td>
<td>Initial revision</td>
<td>SA</td>
</tr>
<tr>
<td>A</td>
<td>2019-02-25</td>
<td>-</td>
<td>Released revision</td>
<td>SA</td>
</tr>
</tbody>
</table>
1 Introduction

This document describes an application intended for testing the transfer link between the host PC and the digitizer with respect to achievable and sustainable performance. It can also act as a code example for guidance on how to write an application for triggered streaming acquisitions with the digitizer. The code is written for the ADQ14 digitizer family.

1.1 Definitions and Abbreviations

Table 1 lists the definitions and abbreviations used in this document.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triggered Streaming</td>
<td>The mode of acquisition used in the application</td>
</tr>
<tr>
<td>PXIe</td>
<td>PXI Express form factor (chassis)</td>
</tr>
<tr>
<td>PCIe</td>
<td>PCI Express form factor (PC-based)</td>
</tr>
<tr>
<td>USB</td>
<td>USB form factor (USB3 or USB2)</td>
</tr>
<tr>
<td>xNgM</td>
<td>PCIe enumeration result (N lanes, generation M)</td>
</tr>
<tr>
<td>std out</td>
<td>Standard output (to the console)</td>
</tr>
<tr>
<td>std in</td>
<td>Standard input (from the console, typically the user)</td>
</tr>
<tr>
<td>MB</td>
<td>MegaByte (1,048,576 bytes)</td>
</tr>
</tbody>
</table>

2 What to expect

2.1 Performance

The performance is limited in different steps of the path from the digitizer to the host PC.

- **Interface specification** Limits the maximum capacity of link of the raw number of transferred bytes.

- **Host PC infrastructure limitations** Can the host PC slot used support the correct number of lanes and link lane speeds intended? Are there any bottlenecks when using the board further up the infrastructure where bandwidth may be shared with other units?

- **Host PC CPU and memory bandwidth limitations** The parsing of records relies on the CPU to interpret and perform copying of the data to the user space. The memory bandwidth of the host system must support the intended transfer performance.

- **Data overhead** There is a difference between effective transfer rate and the raw number of transferred bytes. For a record from the digitizer there are record headers, and the internal packet generation also adds some overhead.
• **Application overhead** The application can be written in a thousand different ways, providing different levels of performance.

• **Enumeration** The enumeration result depends on the host system capabilities. The ADQ14 (in form factors PCIe/PXIe) supports up to x8g2 and ADQ14-FWDT (in form factor PCIe) supports up to x8g3. ADQ7 supports up to x8g3. Check that the used slot supports the intended enumeration of the board.

• **Digitizer transfer settings** The host PC uses transfer buffers to get data from the digitizer. These are configure (number of buffers and size of buffers) through the API SetTransferBuffers. Higher transfer speeds will require higher number and higher size for these buffers. The buffers are allocated in contiguous kernel memory of the host.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Enumeration</th>
<th>Maximum transfer speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXIe/PCle</td>
<td>x1g1</td>
<td>200 MB/s</td>
</tr>
<tr>
<td>PXIe/PCle</td>
<td>x4g1</td>
<td>800 MB/s</td>
</tr>
<tr>
<td>PXIe/PCle</td>
<td>x4g2</td>
<td>1600 MB/s</td>
</tr>
<tr>
<td>PXIe/PCle</td>
<td>x8g1</td>
<td>1600 MB/s</td>
</tr>
<tr>
<td>PXIe/PCle</td>
<td>x8g2</td>
<td>3200 MB/s</td>
</tr>
<tr>
<td>PXIe/PCle</td>
<td>x8g3</td>
<td>6400 MB/s</td>
</tr>
<tr>
<td>MTCA</td>
<td>x4g2</td>
<td>1600 MB/s</td>
</tr>
<tr>
<td>MTCA</td>
<td>x4g3</td>
<td>3200 MB/s</td>
</tr>
<tr>
<td>USB</td>
<td>USB2</td>
<td>25 MB/s</td>
</tr>
<tr>
<td>USB</td>
<td>USB3</td>
<td>300 MB/s</td>
</tr>
<tr>
<td>10GbE</td>
<td>10GbE</td>
<td>800 MB/s</td>
</tr>
</tbody>
</table>
3 Code overview

3.1 Digitizer mode of operation

Table 3: Used digitizer mode

<table>
<thead>
<tr>
<th>Category</th>
<th>Used mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition mode</td>
<td>Triggered Streaming</td>
</tr>
<tr>
<td>Trigger mode</td>
<td>Internal trigger (periodic trigger)</td>
</tr>
</tbody>
</table>

3.2 Code parts

3.2.1 Source files

- example_transfer_test.c - Holding the main() entry point and the ADQAPI connection setup.
- example_tt_adq14.c - The code performing the test.
- ADQAPI.h - The header file for the installed API (contains all API commands)

3.2.2 Flow

3.3 Tools

The application is written in the programming language C and requires an appropriate C compiler to be used. In Windows it can be used with for instance Visual Studio from Microsoft and in Linux it is typically compiled with the gcc components.
4 Running the application

4.1 Configurable parameters

There are a number of parameters that can be chosen to provide the test you desire to perform. These are chosen run-time by the user in the console.

Note

Make sure that you have selected the appropriate 32-bit/64-bit target selection for the OS you intend to run the application on.

Tip

These parameters can also be inserted automatically with redirecting a file into standard input. There is a file params.txt in the example directory that contains the default run-time parameters. The example is run with taking these parameters from the file by issuing "ADQAPI_transfer_test_example.exe < params.txt" from the command window.

- **Configuration Mode** This sets the way to configure the test. 0 will just run with default settings, 1 will enable test configuration and 2 will enable test configuration and the advanced settings.

- **Parsing Mode** This sets the mode of parsing. 1 is full parsed mode (DEFAULT), 2 is non-user parse mode and 3 is raw mode. Full parsed mode generates records to the user, the other two does not parse into records. Raw mode can be used together with offline parsing methods. Mode 3 will have the highest performance, mode 2 slightly less and mode 1 the least performance - due to the host PC load inferred by the different modes.

- **Desired run time** This sets the number of seconds for the test to run. 0 is a 30 second run (DEFAULT). Using -1 will make it an infinite run. However, infinite runs will not generate any final reports, as when interrupted it will break immediately.

- **Desired transfer speed to test.** Sets the test data generation speed in MB/s. 1024 MB/s (DEFAULT). The test will auto-configure from this parameter and the trigger rate to select a record size and amount of channels that will produce the correct amount of data.

- **Desired trigger rate to use.** Sets the trigger rate in Hz to use. 1 kHz (DEFAULT). The test will auto-configure from this parameter and the desired transfer test speed to select a record size and amount of channels that will produce the correct amount of data.

Note

A higher trigger rate will use shorter records to provide the amount of data generation requested. As a consequence this will create more records and thus also more data overhead.

- **Number of kernel buffers.** [Advanced] Sets the number of kernel buffers to use. 32 is DEFAULT.

- **Size of kernel buffers.** [Advanced] Sets the size of kernel buffers to use for allocation (in MBytes). 4 MB is DEFAULT.
Warning

On Linux systems contiguous memory area may be very limited by the system configuration. One some Linux versions CMA settings may be changed to support higher allocations.

- **Periodic report interval.** [Advanced] Sets the amount of data in Mbytes transferred for the periodic report to be output. 1024 MB is DEFAULT.
4.2 Test case setup report

The test auto-configures from the set parameters and reports back the chosen settings and some validation and warnings are provided for checking that the test case is reasonable.

4.2.1 Default setup

Here is what it looks like using the default configured test.

The application will make a rough self-assessment of the expected capability vs the configured test case and report whether it expects the test to pass OK or not. If everything looks OK, press ENTER to start the test.
4.2.2 Configured setup

Here is what it looks like, when configuring it for Full parse mode / 30 seconds of run-time / 1024 MB per second / 500 Hz trigger rate:

The application will make a rough self-assessment of the expected capability vs the configured test case and report whether it expects the test to pass OK or not. If everything looks OK, press ENTER to start the test.
4.3 Reporting during run

4.3.1 Status flow

A 'W' character is written each time the application calls waitingfortransferbuffers. For each time there is more than zero buffers, that number is printed. If it exceeds 9 buffers, a 'N' character is printed. This repeats for the extent of the test, these printouts are only interrupted by any periodic reports or indications produced.

4.3.2 Periodic report

For every PRINT_EVERY_N_MBYTES_DEFAULT MBytes passed (default is 1024 MB) an intermediate report on results are produced. Can be configured to other value in advanced mode. It looks like this:

4.3.3 Indications

- **Streaming overflow detected**

 [ERROR] Streaming overflow detected.

 This means that there has been an overflow in the system and data has been lost. The test will terminate as unsuccessful and produce a final report.

- **Maximum kernel buffer fill level detected**

 [WARNING] Maximum buffer fill level detected.

 This means that kernel buffers are exhausted. Overflow is imminent to occur.

- **High kernel buffer fill level**

 [WARNING] High buffer fill level detected.

 This means that kernel buffers are on the limit of getting exhausted. All data is currently OK but this is an indication that long-time operation may not be robust with these settings.

- **High DRAM buffer usage**

 [WARNING] High DRAM usage.
This means that FPGA DRAM buffers are used to more than 75%. This is an indication of that application is not emptying the transfer buffers fast enough and an overflow may be the result soon.

- **Significant DRAM buffer usage**

 [WARNING] Significant DRAM usage.

 This means that FPGA DRAM buffers are used to more than 25%. This is an early indication of possible robustness issues - host not emptying buffers fast enough, but if they stay at this level there is no problem.
4.4 Interpretation of final results

Before the final report is issued the application will read out the maximum DRAM fill level during the test.

4.4.1 Passed test

The passed result is shown by the line

```
[RESULT] Test OK. All data transferred without detected problems.
```

4.4.2 Failed test

In this case we select, by intent, a configuration that will fail (too high transfer rate for the interface and host controller).

The failed result is shown by the line

```
[RESULT] Test FAILED. Transfer errors occurred.
```

![Console output showing failed test result](image)