
ADQ3 Series Development Kit
User Guide

Author(s): Teledyne SP Devices

Document ID: 20-2507

Classification: Public

Revision: 2023.2

Date: 2023-05-02

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

Contents

1 Introduction 4

1.1 Definitions and Abbreviations . 4

2 Prerequisites 5

3 Development Environment and Tools 6

3.1 Unpacking the Development Kit . 6

3.2 Opening the Development Kit . 7

3.3 Setting Up the Project . 7

3.3.1 Configuration . 7

3.4 Building the Design . 8

3.5 Working with the Design . 8

3.5.1 Typical Design Flow . 8

3.6 Analyzing the Implemented Design . 9

4 General Concepts 14

4.1 Parallel Digital Design . 14

4.2 Data Flow . 14

4.3 Clock Domain Crossing Synchronization . 16

4.3.1 CDC Synchronization of a 1-bit Signal . 17

4.3.2 CDC Synchronization of a Multi-Bit Signal . 18

4.4 AXI Control Bus . 19

4.4.1 Control Bus Signals . 19

4.5 Data Bus . 19

4.5.1 Two Bus Definitions . 19

5 Data Bus Signals 21

5.1 Timestamp . 22

5.2 Timestamp Synchronization . 22

5.2.1 Sample Index . 22

5.2.2 Count . 22

5.2.3 Event . 23

5.3 Trigger . 23

5.3.1 Sample Index . 23

5.3.2 Sample Index Fraction . 23

5.3.3 Rising . 23

5.3.4 Event . 23

5.3.5 Inhibit . 23

5.4 Overrange . 24

5.5 General Purpose . 24

5.6 Sample Data . 24

5.7 Valid . 24

5.8 Record . 24

ADQ3 Series Development Kit — User Guide spdevices.com Page 1 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

5.8.1 Start, Start Index, Stop and Stop Index . 24

5.8.2 Number . 26

5.9 User ID . 26

5.10 Differences relative to ADQ14, ADQ7 and ADQ8 . 26

6 User Logic 1 27

6.1 Default Contents . 27

6.2 Register File . 27

6.3 Default Register File . 28

7 User Logic 2 30

7.1 Default Contents . 30

7.2 Register File . 31

7.3 Default Register File . 31

7.4 Port Control . 34

7.4.1 Port Impedance . 34

7.4.2 ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe . 34

7.4.3 ADQ36-PXIe . 36

8 Timing Closure 37

9 Troubleshooting 38

9.1 Debugging on Hardware . 38

9.1.1 Creating the Debug Core . 38

9.1.2 Connecting to the Debug Core . 39

ADQ3 Series Development Kit — User Guide spdevices.com Page 2 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

Document History

Section Description

Revision 2023.2 2023-05-02

Document the ADQ30-PCIe digitizer.

Revision 2023.1 2023-01-26

Rename document to “ADQ3 Series Development Kit—User Guide”.

The document version is now based on the release names, e.g. “2023.1”, rather than

a letter of the alphabet.

7.4.2 Document port control of GPIOB and GPIOC on ADQ32-PCIe and ADQ33-PCIe.

3.3.1 Updated for PDRX release.

7.4.2, 7.4.3 Add Tables 4 and 5 to list the values of the parameters associated with the ports in

the second user logic area.

5.8.1 Add a note about the record framing signals and the data acquisition process.

Revision B 2022-03-31

Revision A 2021-06-21

ADQ3 Series Development Kit — User Guide spdevices.com Page 3 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

1 Introduction

This document is the user guide for the development kit of the data acquisition firmware for ADQ3 series

digitizers. There are different versions of the development kit depending on the device-to-host interface

and the target number of channels. Make sure the development kit matches the target hardware.

The development kit centers around the user logic areas. These areas target strategic points in the

data path and are specifically intended to contain custom HDL designs.

The first user logic area, UL1, described in Section 6, operates on the full-rate data stream—before

the trigger information has been decoded to create records. The second user logic area, UL2, described

in Section 7, operates on complete records, potentially with a reduced sampling rate.

� Release 2023.2

This document describes the state of ADQ3 series digitizers with firmware and software artifacts from

release 2023.2. Unless otherwise stated, this document is also valid for any subsequent patch release.

These append an additional number at the end of the release label. For example, 2023.1.1 would be

the first patch release of the major release 2023.1.

1.1 Definitions and Abbreviations

Table 1 lists the definitions and abbreviations used in this document.

Table 1: Definitions and abbreviations used in this document.

Item Description

ADC Analog-to-digital converter

CDC Clock domain synchronization

Devkit Development kit

DBT1 Data bus type 1

DBT2 Data bus type 2

FWDAQ The data acquisition firmware

GiB Gibibyte (10243 bytes)

PCB Printed circuit board

PDRX Pulse dynamic range extension

RTL Register transfer level

Tcl Tool command language—scripting language used in Vivado.

UL1 User logic 1—the first open FPGA area, see Section 6.

UL2 User logic 2—the second open FPGA area, see Section 7.

VHDL VHSIC hardware description language

Verilog Hardware description language

Vivado Xilinx FPGA design suite

ADQ3 Series Development Kit — User Guide spdevices.com Page 4 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

2 Prerequisites

The development kit has the following prerequisites:

• A license for the development kit purchased from Teledyne SP Devices.

• A license for the Xilinx design tools. For current versions of the development kit, a license for

Vivado 2020.2 is required.

– Minimum tooling is the Vivado Design Edition.

– The Vivado WebPack does not support this development kit.

– Xilinx ISE cannot be used.

• Previous experience with defining custom logic using Verilog or VHDL.

ADQ3 Series Development Kit — User Guide spdevices.com Page 5 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

3 Development Environment and Tools

This section describes the development kit workflow and the associated tools.

3.1 Unpacking the Development Kit

The development kit is delivered as a .zip archive containing the project files, source files and doc-

umentation. The first level of the archive contains a README file and another archive that is password

protected. By unpacking the password protected archive, the user agrees to the terms of the develop-

ment kit license. Make sure to extract the archive to a directory where the current user has read and

write permissions.

� Important

By unpacking the password protected archive, the user agrees to the terms of the development kit

license.

The extracted archive is organized as follows:

<Extract root>/

constraints/ Contains the constraint files for the design.

documentation/ Contains the documentation for the development kit.

framework/ Contains the files representing the base design along with header files

to interact with the data bus. Apart from the file config.vh (see Sec-

tion 3.3.1, the files in this directory should not be modified by the user.

user_logic/ Contains the Verilog source files for the user logic areas.

license.txt Development kit license file.

devkit.tcl The Tcl file that is sourced to enable the development kit.

� Note

Apart from the file config.vh (see Section 3.3.1, the files in the framework directory are not intended

to be edited by the end user.

ADQ3 Series Development Kit — User Guide spdevices.com Page 6 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

3.2 Opening the Development Kit

To open the development kit in Vivado, follow the steps outlined below.

1. Start Vivado

2. In the menu bar, select Tools > Run Tcl Script...

3. Open the file <Extract root>/devkit.tcl. The Tcl console will output message similar to this:

*** ADQ3 Series Development Kit ***�
Revision: r59529�
Usage:�
devkit_setup - Create project�
devkit_build - Build project�
devkit_analyze - Analyze implemented design�
devkit_mcs - Generate .mcs firmware file.�

(Not needed if devkit_build is used.)�

At this point, the Tcl commands specific to the development kit have been defined and are available in

the Tcl console. The project is now ready to be set up for first-time use.

� Note

The development kit for ADQ3 series digitizers works differently compared to previous products since

building the user logic areas no longer requires special Tcl commands. See Section 3.5 for details.

3.3 Setting Up the Project

To set up the development kit, execute the command

devkit_setup

in the Tcl console. The process may take a moment to finish. Once the setup is complete, a Vivado

project has been created and the design is ready to be built. This step only has to be completed once,

after which the following directories will have been created:

<Extract root>/

artifacts/

latest/ Contains firmware files from the most recent build.

log/ Contains firmware files from previous builds.

build/ Contains all generated project files.

reports/ Contains the results from the development kit analyzer tool (see Section 3.6).

3.3.1 Configuration

The file framework/config.vh contains parameters that influence the base design. The parameters

listed below may be modified and serve as a way to remove modules in the base design to free up FPGA

ADQ3 Series Development Kit — User Guide spdevices.com Page 7 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

resources, provided that the application does not require the features they provide. The parameters not

listed below are read-only and should not be modified.

ENABLE_FIR_FILTER

This parameter enables the built-in FIR filter. The filter is enabled by default, and can be removed

by removing the define.

ENABLE_PDRX_COMBINE

This parameter enables the PDRX combine module. The PDRX combine module is enabled

by default on the supported hardware and firmware combinations. The combine module can be

removed by removing the define. This define is supported for ADQ32 running 2CH firmware.

ENABLE_PDRX_FILTER

This parameter enables the PDRX filter module. The PDRX filter module is enabled by default

on the supported hardware and firmware combinations. The filter module can be removed by

removing the define. This define is supported supported for ADQ32 running 2CH firmware.

� Important

The module is included if the corresponding parameter is defined, and is removed if the parameter is

undefined.

3.4 Building the Design

To build the entire design, execute the command

devkit_build

in the Tcl console. Depending on the computer specifications and the complexity of the design as a whole,

i.e. the precomplied design and the user logic together, this may take several hours. Once the process

is complete, an .mcs file has been generated in the artifacts/latest/ directory. This file represents

a new firmware for the digitizer and may be uploaded using the ADQUpdater application. Refer to the

ADQUpdater user guide [1] for instructions on how to manage the digitizer’s firmware.

3.5 Working with the Design

This section describes the workflow of adding customized logic functions to the digitizer firmware.

3.5.1 Typical Design Flow

This section outlines the typical design flow for the development kit.

1. Set up the development kit project as described in Section 3.3.

2. Modify or insert new Verilog code into user_logic1.v or user_logic2.v. This operation can be

broken down into four steps:

(a) Extract data, data valid and other relevant bu using the bus extraction macros (see Section 5).

ADQ3 Series Development Kit — User Guide spdevices.com Page 8 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

(b) Process the extracted signals, i.e. stimulate the custom user design.

(c) Insert the processed data, data valid and relevant bus signals using the bus insertion macros

(see Section 5).

(d) Set the correct value for the BUS_PIPELINE delay parameter to keep the correct time relation

between signals that were not manually inserted.

3. Generate the FPGA configuration file (.mcs file) by using one of the two methods outlined below:

• Automatic

(a) Execute the command

devkit_build

in the Tcl console.

• Manual

(a) Start the build by selecting Generate Bitstream in Vivado. This action will rebuild the

design and end with the bitstream generation.

(b) Once the bitstream is available, generate the FPGA configuration file by executing the

command

devkit_mcs

in the Tcl console. The configuration (.mcs) file can be found in the artifacts/latest/
directory after the process is complete.

4. Analyze the design for potential problems by executing the command

devkit_analyze

in the Tcl console and then open the HTML report in the reports/ folder. See Section 3.6 for

details.

5. Program the configuration file representing the custom design into the digitizer using the ADQUp-

dater application. Refer to the corresponding user guide [1] for details on the programming process.

6. Test the custom firmware using either

• one of the software examples available in the ADQAPI library or

• a custom user application.

3.6 Analyzing the Implemented Design

When the implementation step has completed it is highly recommended to analyze the design to detect

the most common issues. To do this, execute the command

devkit_analyze

in the Tcl console. This will run a set of checks and summarize the results into a report. The generated

report includes the current results and the difference with respect to the previous report. To keep track of

ADQ3 Series Development Kit — User Guide spdevices.com Page 9 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

design parameter trends, it is encouraged to generate the report after every run even if no timing errors

occurred. The report is saved as an HTML file that should be opened in a web browser, see Fig. 1. There

are also several log files produced and placed in the reports/ folder that offers additional details on the

reported issues.

Figure 1: The HTML report from devkit_analyze rendered in a web browser.

� Tip

If a continuous integration tool is used to automate the workflow, consider integrating the output from

devkit_analyze as a part of the process.

The report is divided into six different sections. Each section has several parameters and result values.

For parameters with a maximum value the format is

Percentage[Value/Maximum value] (Difference)

and values without an upper boundary are formatted as

Value (Difference)

The difference is calculated by subtracting the value from the previous report from the current value.

Each parameter also has a trend graph that provides a quick overview of the result. Fig. 2 shows a

section from the report. A value displayed in red indicates an error that must be addressed. Warnings

that may require investigation are shown in orange.

The report contains the following sections:

Critical warnings

These warnings must be fixed, or at least, well understood.

CDC Critical

Check the reports/post_impl.rpt for details.

ADQ3 Series Development Kit — User Guide spdevices.com Page 10 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

Figure 2: Excerpt of the utilization section from the devkit_analyze report.

Synth Critical

Check the reports/synth_runme.log for details.

Impl Critical

Check the reports/impl_runme.log for details.

No Clock Critical

Check the reports/post_impl_no_clock.rpt for missing clock constraints.

Warnings

These warnings may cause problems and require investigation. Check the corresponding report

file listed in the section for critical warnings for additional details.

Utilization

The total utilization of available instances of LUT, flip-flop (register), block RAM and DSP. This

includes both the framework and user logic designs.

Timing

The importance of timing closure should be well known when working with an HDL designs. Any

failing timing requirements must be fixed before uploading the firmware to the digitizer to avoid

unexpected behavior.

Key values

These parameters are indicators that should be observed to avoid unwanted and/or unexpected

results.

Congestion

Congestion is a measure of shortage of routing resources. A value of 5 or greater indicates

shortage and will lead to significant problems with fulfilling the timing constraints. Please

refer to UltraFast Design Methodology [2] for resolutions.

Maximum fanout

Fanout is the number of nodes driven by a register. The reported number is the maximum

fanout in the design. Fanout are in most cases not a problem since Vivado automatically

replicates registers with high fanout.

ADQ3 Series Development Kit — User Guide spdevices.com Page 11 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

� Note

Use of KEEP, KEEP_HIERARCHY, DONT_TOUCH, MARK_DEBUG or ASYNC_REG properties will

prevent the replication of registers.

Control sets

A control signal is a signal to the set/reset and clock enable pin on a register. Registers

that share a common control signal constitute a control set. The report provides the per-

centage of the recommended acceptable value given as a guideline in UltraFast Design

Methodology [2]. Excessive usage may lead to difficulty in reaching the timing goals.

Route CPU time

Route CPU time is the process time used during route.

Place CPU time

Place CPU time is the process time used during place.

� Note

An unexpected increase in the of place and/or route build time may indicate a potential

problem in the design that may require intervention.

Excessive logic level

This report checks that the number of combinatorial instances between clocked primitives (regis-

ters in most cases) are reasonable with respect to the clock frequency. It is highly recommended

to add pipelining to logic that is reported as “excessive” to avoid problems in timing closure. The

following critical clocks are checked.

pcie_axi_aclk

AXI control bus clock. Check reports/exlogic_pcie_axi_aclk.rpt for details.

clk_datapath

Data path clock. Check reports/exlogic_clk_datapath.rpt for details.

data_clk_2x

Framework trigger logic clock. Check reports/exlogic_data_clk_2x.rpt for details.

c0_dram_app_clk

Framework DRAM logic clock. Check reports/exlogic_c0_dram_app_clk.rpt for de-

tails.

c1_dram_app_clk

Framework DRAM logic clock. Check reports/exlogic_c1_dram_app_clk.rpt for de-

tails.

ADQ3 Series Development Kit — User Guide spdevices.com Page 12 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

� Note

Under normal circumstances, the internal clocks should not report any excessive logic

levels. However, due to Vivado’s optimization efforts, there may be reports if significant

timing issues are introduced in the user logic. If the user logic is well timed and excessive

logic levels are still reported, please contact TSPD support.

ADQ3 Series Development Kit — User Guide spdevices.com Page 13 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

4 General Concepts

This section introduces concepts surrounding the development kit based on FWDAQ for ADQ3 series

digitizers. Please refer to the ADQ3 Series FWDAQ User Guide [3] for the base knowledge on how the

digitizer operates. The reader is assumed to be familiar with digital design in general and this section

only serves to highlight some important aspects of digital design with respect to the development kit.

4.1 Parallel Digital Design

More often than not, the FPGA cannot be clocked at the same rate as the incoming data. To handle this

scenario, the logic needs to be implemented to handle several data words per clock cycle, i.e. several

data words in parallel. Parallel design is more challenging than its counterpart, where one data word is

processed per clock cycle. Instructing the reader on parallel design is outside the scope of this document

but moving forward, some familiarity with the concept is expected.

4.2 Data Flow

This section provides a brief description of each block in the data path. Fig. 3 shows an overview of

the data path of FWDAQ for the ADQ3 series digitizers. The data propagates between the modules in

the data path using a bus interface with custom insertion and extraction macros for convenience (see

Section 5). Additionally, each module can be accessed from the AXI control bus. These two buses do

not exist in the same clock domain, meaning any signals transferred from one domain to the other must

be synchronized to the receiving clock. Refer to Sections 4.3 and 4.4 for additional details.

� Important

Any signals transferred from the control bus clock domain to the data bus clock domain or vice versa

must be synchronized to the receiving clock.

Trigger control

Thismodule is taskedwith inserting events on the data bus. The data bus has a single bit indicating

the event itself and bits with additional information such as the position of the event within the

parallel data words (samples).

Gain and offset

The digital gain and offset module is primarily intended for factory calibration but it may also be

accessed by the user, and offers a way of scaling the signal.

Test pattern

This module may be configured to substitute the ADC samples with a synthetically generated

pattern.

DBS

The digital baseline stabilizer, DBS, is designed for pulse signal measurement where high accu-

racy relative to a known baseline is required. Note that DBS is not enabled by default.

ADQ3 Series Development Kit — User Guide spdevices.com Page 14 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

Trigger ControlDMA M

DRAM FIFOS

P2P packerS

Trigger ControlUser logic 2S

A
X

I i
nt

er
co

nn
ec

t

Trigger ControlBarrel shifterS

Trigger ControlAcquisitionS

Trigger ControlHorizontal offsetS

Trigger ControlLevel triggerS

Trigger ControlSample skipS

Data bus type 2

Data bus type 1

M AXI Master

S AXI Slave

Trigger ControlUser logic 1S

Trigger ControlFIR filterS

TRIG
SYNC
GPIO

Clocking
CLK

Star

B
ac

kp
la

ne

Clk100

Front panelPXIe

A
B

#

S

ChannelsB
A

C
0
1

Trig

Only on PXIe devices

Trigger ControlPDRX filterS

Trigger ControlPDRX combineS

Trigger ControlDBSS

Trigger ControlTest patternS

Trigger ControlGain and offsetS

Trigger Control
Trigger control

ADC interface

Figure 3: A block diagram of the data path of FWDAQ. The two user logic areas are highlighted in green.

ADQ3 Series Development Kit — User Guide spdevices.com Page 15 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

User logic 1

This user logic area is intended to be used to process the incoming samples before any data

reduction has been applied. Refer to Section 6 for a more detailed description of the module.

FIR filter

The base design contains a FIR filter module able to subject the data from each channel to a

digital filter function. The FPGA resources used by this module can be reclaimed by the user. See

Section 3.3.1 for more information.

Sample skip

The sampling rate can be reduced by the sample skip module. For example, setting the sample

skip factor to 4 means that every fourth sample is kept and the others are discarded.

Level trigger

This module is used to insert events on the data bus based on the signal level within the data bus

channels.

Acquisition

The acquisition module is tasked with framing the channels on the data bus into records based

on a trigger event. The starting point and stopping point of the record is marked by a logic-high

pulse on the record start and record stop data bus signals, respectively.

Barrel shifter

This module rearranges the parallel samples on the bus so that the first entry is the first sample

in the record.

User logic 2

This user logic area is intended for processing data after the record framing and any data reduction

has occurred. Refer to Section 7 for a more detailed description of the module.

Peer-to-peer packer

The peer-to-peer packer is tasked with converting the information on the data bus into packets

that is suitable for the intended endpoint and application.

DRAM FIFO

Before the packets are dispatched to their endpoint, they pass through the on-board DRAM. This

allows the digitizer to buffer packets in the event of a temporary stall on the physical interface or

a short period where the acquisition rate is higher than the readout rate.

DMA

The DMA engine transports packets from the DRAM to a receiving endpoint.

4.3 Clock Domain Crossing Synchronization

Aclock domain crossing, CDC, is a boundary where digital signals pass from one clock domain to another.

This boundary constitutes a critical point in the design and care must be taken to synchronize signals

ADQ3 Series Development Kit — User Guide spdevices.com Page 16 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

passing through the boundary to the receiving clock.

There are several techniques to choose from depending on the type of signal that should be synchro-

nized, e.g. a multi-bit signal is not handled in the same way as a signal that is 1 bit wide. The reader is

expected to be familiar with CDC synchronization techniques. The paper by Clifford E. Cummings [4] is

a good place to start if the reader’s knowledge needs to be refreshed.

In each of the user logic areas, there is one clock domain crossing in the default design—between the

control bus clock and the data bus clock. This boundary joins the control bus register values, representing

the current configuration, and the data bus logic, tasked with processing the data. To aid the user, there

are two CDC helper modules available in the development kit framework, listed in Table 2.

Table 2: CDC modules available in the development kit framework.

Module Description

cdc_bit CDC synchronization module for a 1-bit signal (see Section 4.3.1).

cdc_bus CDC synchronization of a multi-bit signal using a strobe (see Sec-

tion 4.3.2).

These modules should cover most CDC needs and should be used whenever CDC synchronization is

called for. Refer to Section 4.4 for details on the control bus and to Sections 6 and 7 for examples of

CDC synchronization and logic making use of these register values.

4.3.1 CDC Synchronization of a 1-bit Signal

The module cdc_bit should only be used for a signal that is unrelated to other signals since the propa-

gation of each bit may be different for parallel instances. Below is a description of the instantiation.

cdc_bit #(�
.ENABLE_OUTPUT_REGISTER(”true”) // String; ”true” or ”false”.�

// Adds register on data output.�
) cdc_bit_reset (�

.src_clk_i(src_clk), // 1-bit input: Source clock.�

.dest_clk_i(dest_clk), // 1-bit input: Destination clock.�

.src_data_i (src_data), // 1-bit input: Data driven by src_clk_i�

.dest_data_o(dest_data) // 1-bit output: Data syncronized to dest_clk_i�
);�

� Important

In most cases it is recomended to keep the default value of ”true” for the parameter

ENABLE_OUTPUT_REGISTER since the registers used for the CDC synchronization will prevent the auto-

matic replication performed by Vivado to reduce fanout. By adding the additional register, this situation

is avoided.

ADQ3 Series Development Kit — User Guide spdevices.com Page 17 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

4.3.2 CDC Synchronization of a Multi-Bit Signal

Themodule cdc_busmust be used when it is critical that each bit in a signal is propagated simultaneously.

cdc_bus #(�
.WIDTH(WIDTH) // DECIMAL: Number of data bits.�

) cdc_bus_datard (�
.src_clk_i(src_clk), // 1-bit input: Source clock.�
.dest_clk_i(dest_clk), // 1-bit input: Destination clock.�
.src_rst_i(src_rst), // 1-bit input: Reset dest_data to zero.�

// NOTE: It is recommeded to tie src_rst_i low�
// unless there is a specific reason to use it.�

�
.src_data_i(src_data), // WIDTH-bit input: Data to be synchronized.�
.src_valid_i(src_valid), // 1-bit input: When asserted src_data_i will�

// be synchronized to dest_clk_i.�
// NOTE: This signal is ignored while�
// src_ready_o is deasserted.�

.src_ack_o(src_ack), // 1-bit output: Asserted when the data has�
// been transferred to the destination clock.�

.src_ready_o(src_ready), // 1-bit output: While asserted the module is�
// ready to accept new data.�

�
.dest_valid_o(dest_valid), // 1-bit output: Asserted when the data has�

// been transferred to the destination clock.�
.dest_data_o(dest_data) // WIDTH-bit output: Data synchronized�

// to dest_clk_i.�
);�

� Important

In most cases there is no need to clear the output registers in cdc_bus and it advised to tie src_rst_i
low. It shall not be connected to a global reset as this will have negative impact on timing.

ADQ3 Series Development Kit — User Guide spdevices.com Page 18 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

4.4 AXI Control Bus

Each user logic area can be accessed via the AXI control bus which provides a connection between

the custom logic and the software running on the host computer. A transaction cannot be started from

a user logic area and thus, communicating between the two modules using the control bus is not sup-

ported. Instead, transactions are initiated by the host interface which in turn is initiated from theADQAPI,

specifically by using the functions to read or write user registers:

• ReadUserRegister()

• WriteUserRegister()

Refer to the ADQ3 series user guide [3] for the API documentation.

� Note

Transactions on the control bus cannot be initiated from the user design, only from calling specific

functions in the ADQAPI.

4.4.1 Control Bus Signals

The control bus interface follows the AXI4-Lite format. The user logic needs to implement an AXI4-Lite

slave instance.

4.5 Data Bus

The stream of ADC data, its associated control signals and other metadata all propagate on the data

bus. The various signals are intricately related to each other and it is crucial that their relation in time is

kept intact while they are processed by the custom logic.

� Important

The bus signals are closely related to each other and it is crucial that their relation in time is kept intact

through the user logic areas.

The development kit includes predefined functions to simplify the bus operations. There are two points

where the user design interfaces with the data bus: extraction and insertion. As the names suggest,

targeted signals are extracted from the bus and input to the custom logic to create a response. The

logic’s output signals are inserted back into the data bus and continues to propagate through the design

(see Fig. 3). Signals that are not inserted back into the data bus will be subjected to pipelining with a

delay equal to the value of the BUS_PIPELINE parameter. This parameter must be defined in the same

HDL source file as the bus operations. Fig. 4 outlines the principle of working with the bus signals in the

user space.

4.5.1 Two Bus Definitions

The design has two different data bus definitions that are labeled data bus type 1 (DBT1) and data

bustype 2 (DBT2). The first user logic area uses the DBT1 bus definition while the second user logic

area uses the DBT2 definition. The two bus definitions each have their own set of functions to support

ADQ3 Series Development Kit — User Guide spdevices.com Page 19 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

bus operations. These are available in Verilog header (.vh) files in the framework/ directory and are

specified in Section 5. The user must only include the file matching the bus definition in the target user

logic area, i.e.

• databus_type1_functions.vh for the first user logic area (UL1) and

• databus_type2_functions.vh for the second user logic area (UL2).

� Note

In the default design, the source files for the two user logic areas includes the appropriate bus defini-

tions.

Custom logic

Pipeline

Bus

Extracted
fields

Inserted
fields

Fields not
inserted manually

extraction

Bus

insertion

User space

BUS_PIPELINE

Figure 4: A diagram showing the principle of extracting signals from and inserting signals into the

data bus. Any field not inserted manually is subjected to a pipeline delay equal to the value of the

BUS_PIPELINE parameter.

ADQ3 Series Development Kit — User Guide spdevices.com Page 20 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

5 Data Bus Signals

This section provides a reference for the bus signals that are present on the data buses. Each section

defines a bus segment (which may consist of one or several signals) and provides a description of

its functionality and purpose. The interface functions are named starting with one of the two prefixes

insert_* or extract_*, to separate insertion and extraction. The functions are then further split into

common_* and channel_*. Common signals are shared between all channels, with only a single entry

on the bus, while the channel signals have one entry for each data channel. The functions to interface

with the latter signal type take an additional argument to identify the target channel. Table 3 lists the

documented bus signals and should be used as an index to navigate this section.

� Example

To extract the common timestamp from the type 1 data bus (first user logic area), use

extract_common_timestamp(DONT_CARE)

where DONT_CARE can be any integer in practice since the argument is not used. For data bus type 2

(second user logic area), each channel has its own timestamp. For example,

extract_channel_timestamp(0)

extracts the timestamp from channel A and

extract_channel_timestamp(1)

from channel B and so on.

� Example

To insert the common timestamp from the type 1 data bus (first user logic area), use

insert_common_timestamp(timestamp)

where timestamp is the 64-bit wide signal to insert. For data bus type 2 (second user logic area), each
channel has its own timestamp. For example,

insert_channel_timestamp(timestamp, 0)

inserts the timestamp to channel A and

insert_channel_timestamp(timestamp, 1)

to channel B and so on.

� Important

Bus signals not mentioned in this section are not yet implemented. Do not interact with these signals

from the development kit.

ADQ3 Series Development Kit — User Guide spdevices.com Page 21 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

Table 3: An overview of the data bus signals, including for which bus types the signals are present, and

whether they are shared between the channels or separate.

Signal Page DBT1 DBT2

Timestamp 22 Common Per channel

Timestamp synchronization 22 Common Per channel

Trigger 23 Per channel Per channel

Overrange indicator 24 Per channel Per channel

General purpose 24 Per channel Per channel

ADC sample data 24 Per channel Per channel

Valid 24 N/A Per channel

Record 24 N/A Per channel

User ID 26 N/A Per channel

5.1 Timestamp

The timestamp signal provides amonotonically increasing counter to serve as a time base for the digitizer.

The signal is 64 bits wide and holds an unsigned value that may be synchronized to external and internal

events by using the timestamp synchronization mechanism. The timestamp value during a data clock

cycle where record start is asserted propagates to the user space in the host computer via the record

header. The timestamp is shared between all channels for data bus type 1 and per channel for type 2.

5.2 Timestamp Synchronization

The timestamp synchronization bus segment is shared between all channels for data bus type 1 and

per channel for type 2, just like the timestamp. The segment consists of three signals, described in the

following sections.

5.2.1 Sample Index

The sample index is an unsigned value representing the integer part of the position of the timestamp

synchronization event within the parallel sample data in a clock cycle. There is no fractional part, like in

the trigger segment, so the value always indicates the index of the closest sample earlier in time. For

example, if an event source with subsample precision is used to synchronize the timestamp, the position

‘3.6’ would propagate as ‘3’.

5.2.2 Count

The counter is tasked with keeping track of the number of timestamp synchronization events since the

mechanism was last armed and is represented by an unsigned number. The counter value during a data

clock cycle where record start is asserted propagates to the user’s application via the record header—

provided the mechanism is set up and activated.

ADQ3 Series Development Kit — User Guide spdevices.com Page 22 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

5.2.3 Event

The event is a 1-bit signal that, when asserted, indicates that a timestamp synchronization has occurred

and that the other two fields are valid.

5.3 Trigger

The trigger bus segment is defined on a per-channel basis and consists of a few signals that together

identify the trigger condition for the corresponding channel. The individual signals are described in the

following sections.

5.3.1 Sample Index

The sample index signal is an unsigned value representing the integer part of the trigger position within

the parallel sample data in a clock cycle. This field is concatenated with the trigger event sample index

fraction field to get a fixed-point fractional value showing where the trigger occurred with full resolution.

The value is only valid when the trigger event is asserted.

5.3.2 Sample Index Fraction

The sample index fraction signal is an unsigned value representing the fractional part of the trigger

position within the parallel sample data in a clock cycle. The field is a fixed-point value in units of samples,

where the decimal point is to the left of the most significant bit. This field is concatenated with the

trigger sample index field to get a fixed-point fractional value showing where the trigger occurred with full

resolution. This field is wider in DBT2 to maintain the trigger precision when using algorithms like sample

skip, which increases the sampling period. The value is only valid when the trigger event is asserted.

5.3.3 Rising

The rising signal indicates the polarity of the trigger event. A rising edge event is indicated by a logic high

level and a falling edge event is indicated by a logic low level. The value is only valid when the trigger

event is asserted.

5.3.4 Event

The trigger event is a 1-bit signal indicating that the configured trigger condition has been met in this

data clock cycle. The signal is active high.

5.3.5 Inhibit

The inhibit signal is controlled by the trigger blocking mechanism. The signal is one bit wide and a logic

high level implies that triggers are blocked, i.e. trigger events are not converted into records by the

acquisition module. Conversely, a logic low level implies that triggers are accepted.

ADQ3 Series Development Kit — User Guide spdevices.com Page 23 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

5.4 Overrange

The overrange indicator is a 1-bit signal indicating that at least one sample within the parallel sample

data in this clock cycle has saturated to the minimum or maximum value of the dynamic range.

5.5 General Purpose

The general purpose signal is 16 bits wide and may be used to achieve various firmware-specific goals.

The default data acquisition firmware does not impose any restrictions on the signal, but special-purpose

firmware may reserve the signal for internal use. If no functional conflict exists, the signal may be used

to, e.g. pass information between the two user logic areas in a well-defined manner. However, if the

sample skip mechanism is active, only information passed while record start is asserted is preserved

throughout the data path. Additionally, the value during a data clock cycle which asserts the record start

bit, will propagate to the user space in the host computer via the record header.

5.6 Sample Data

The sample data signal holds the samples of the analog inputs on a per-channel basis and consists of

several samples in parallel, as explained in Section 4.1. The width of the signal depends on the firmware

configuration and target device. For this purpose, each user logic area defines constants which must

be used to parametrize a custom design. For example, UL1 defines the width of one sample as DBT1_-
CHANNEL0_BITS_PER_SAMPLE and the number of parallel samples as DBT1_CHANNEL0_PARALLEL_SAMPLES
for channel A. A sample is encoded using the 2’s complement representation. The data is MSB aligned,

meaning that the MSB of the raw ADC data is located at bit index DBT1_CHANNEL0_BITS_PER_SAMPLE-1
for channel A.

5.7 Valid

The valid signal exists on a per-channel basis on the type 2 data bus. The signal is one bit wide and when

asserted, every sample within the parallel sample data in the current clock cycle is considered valid. For

the type 1 data bus, the signal is not present since by definition, every clock cycle is considered valid.

5.8 Record

The record bus segment is only present on the type 2 data bus and consists of the signals that frame a

record. The following section describe the individual signals.

5.8.1 Start, Start Index, Stop and Stop Index

The two 1-bit signals record start and record stop work together frame a record of sample data. They

are inclusive, meaning that if either signal is asserted, the sample data associated with that data clock

cycle belongs to the record. The signals may not be asserted in the same data clock cycle. Additionally,

they may only be asserted when the data acquisition process is active.

ADQ3 Series Development Kit — User Guide spdevices.com Page 24 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

� Important

The two 1-bit signals record start and record stop may not be asserted in the same data clock cycle.

Thus, the minimum record length is two data clock cycles.

� Important

The two 1-bit signals record start and record stop may only be asserted when the data acquisition

process is active. Thus, a user module that generates these signals on its own will need to be enabled

after the data acquisition process has started. Refer to the ADQ3 series user guide [3] for more

information.

The two index signals define the start and stop positions within the parallel data word. Both indexes are

inclusive. A record starts at the sample indicated by record start index and stops at the sample indicated

by record stop index.

The record start and stop signal must be sent on a clock cycle where the valid signal is asserted

to have any effect. Any custom user logic should always check that the valid signal is asserted before

reacting to the record start signal. Note that record start and record stop signals may be asserted for

multiple cycles as long as one—and only one—clock cycle is overlapping with the valid signal. Fig. 5

presents a timing diagram where the valid signal is always asserted. In Fig. 6, data is reduced by the

user logic module. Note that the is no requirement for the valid signal to be periodic, it may be asserted

and deasserted as needed.

Clock

Valid

Record start

Record start index 0

Record stop

Record stop index 7

data D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

timestamp T0

Figure 5: Timing diagram for the record framing signals when no data reduction is active. The record

spans ten data clock cycles.

Clock

Valid

Record start

Record start index 0

Record stop

Record stop index 7

Data D0 D1 D2 D3 D4 D5 D6

Timestamp T0

Figure 6: Timing diagram for the record framing signals with data reduction active. The record spans

five valid data clock cycles durring thirteen clock cycles.

ADQ3 Series Development Kit — User Guide spdevices.com Page 25 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

It is important that the integrity of the record bits is preserved. The second user logic area must output

one—and only one—record stop event for each record start event. To discard a record, record start and

record stop assertions must be removed in pairs. If multiple record start events are output without their

corresponding record stop events, data corruption will ensue. Note that it is valid to create an infinite

stream of data by generating a single record start event. Listed below is a summary of the properties of

the record bits.

• Only one record stop event per record start event may be output. Multiple record start events

without any record stop events will result in data corruption.

• The record bits are only valid when valid is asserted.

• The record bits may not be asserted in the same data clock cycle.

• The record bits may only be asserted when the data acquisition process is active.

• The record bits may be asserted for multiple cycles. Only one of these cycles must have data valid

asserted.

5.8.2 Number

The record number is an unsigned value that keeps track of the number of records that have been

created since the data acquisition was last started. The value is only valid when record start is asserted

and wraps at the maximum value.

5.9 User ID

The user ID is an 8-bit signal with similar function to the general purpose signal. However, this signal

may never be claimed for firmware-specific purposes and is reserved for the user. The value during a

data clock cycle in which record start is asserted will propagate to the user space in the host computer

via the record header.

5.10 Differences relative to ADQ14, ADQ7 and ADQ8

This section provides a short list of notable differences in theADQ3 series digitizers data buses compared

to previous digitizers is provided to help with migrating a design.

• The data buses are now named data bus type 1 (DBT1) and data bus type 2 (DBT2) instead of

real-time and reduced rate.

• Low-rate channels have been removed, each channel now instead has parameterized number of

parallel samples and data width.

• Insert/extract function naming scheme has been changed completely to be more consistent.

• The record start index and record stop index signals have been added to allow for a record length

granularity of single samples. This also means that a fixed record length can now result in a varying

number of clock cycles between start and stop, depending on which sample the record starts at.

ADQ3 Series Development Kit — User Guide spdevices.com Page 26 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

6 User Logic 1

The first user logic area (defined in user_logic1.v) uses the type 1 bus definition (Section 4.5) for its

incoming and outgoing data bus. At this point in the data path (Fig. 3), there is no data valid signal

present since every data clock cycle is considered valid. Thus, any custom logic placed in this area must

be designed to output valid data on each data clock cycle.

� Important

The first user logic expects valid data to be output on each data clock cycle. There is no data valid

signal at this point in the data path.

� Note

The file framework/dbt1_param.vh defines constants to use when parametrizing a design in the first

user logic area.

6.1 Default Contents

By default, the first user logic area contains an example of how to interact with the data bus, how to

perform CDC synchronization and a simple test pattern generator. When activated, the test pattern

generator replaces the channel data with a monotonically increasing ramp starting from the base value

specified in BASEVALUE and incrementing by one for each sample in the parallel data word. The pattern

restarts in the next data clock cycle.

� Example

With a base value of 1000 and a parallelization of 8, the generator will output

1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1000, 1001, 1002, ...

6.2 Register File

The register file for the first user logic area is defined in the file user_logic1_s_axi.v. The default

implementation provides an interface consisting of a read port and a write port to each 32-bit register

separately. The naming follows the perspective of the host computer, i.e. the read port provides the host

computer with data from the firmware and vice versa for the write port.

Adding a new register to the default implementation involves declaring a new set of matching ports and

modifying the logic (in user_logic1_s_axi.v) to target this new register when amatching bus transaction

occurs. Refer to the existing design for implementation details.

� Important

Failing to implement correct handling of the AXI bus transactions in user_logic1_s_axi.v can cause

the host computer to hang when the offending register is accessed.

The register access is controlled in the module instantiating the register file, i.e. (in user_logic1.v).
To construct a register with read and write access, connect the two corresponding ports of the register

ADQ3 Series Development Kit — User Guide spdevices.com Page 27 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

file, creating a loopback connection. To instead construct a read-only register, ignore the write port and

provide data for the read port. Finally, to construct a write-only register, tie the read port to a constant

value. Note that registers with write-only access cannot be accessed using a masked write, since the

masking operation relies on being able to read the register’s contents. Refer to the existing design for

implementation details and examples.

6.3 Default Register File

This section documents the register file for an unmodified version of the development kit.

Name UL1ID

Offset 0

Default 0x00abcdef

This register contains a constant value to identify the first user logic area.

31 30 29 28 27 26 25 24

ID[31:24]

ID[23:16]

ID[15:8]

ID[7:0]

7 6 5 4 3 2 1 0

Range Descriptions

Bit 31:0 – ID: Constant identification value � Read-only

This range always reads as 0x00abcdef with the default user logic contents. However, the value

can be changed by modifying the HDL design.

Name UL1CONTROL

Offset 1

Default 0

This register contains the control bit for the simple test pattern generator described in Section 6.1.

ADQ3 Series Development Kit — User Guide spdevices.com Page 28 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

31 30 29 28 27 26 25 24

TESTEN -

-

-

-

7 6 5 4 3 2 1 0

Range Descriptions

Bit 31 – TESTEN: Test pattern enable R/W

If set to 1, the default user logic will replace the data for each channel with a simple test pattern,

see Section 6.1 for additional details. The default value is 0, leaving the data for each channel

unmodified.

Name UL1BASEVALUE

Offset 2

Default 0

This register contains the base value used by the simple test pattern generator described in Section 6.1.

31 30 29 28 27 26 25 24

BASEVALUE[31:24]

BASEVALUE[23:16]

BASEVALUE[15:8]

BASEVALUE[7:0]

7 6 5 4 3 2 1 0

Range Descriptions

Bit 31:0 – BASEVALUE: Test pattern base value R/W

The base value for the simple test pattern controlled via TESTEN. While the range is 32 bits wide,

only as many bits as the channel specifies will be sliced from the register, starting at the least

significant bit. The resulting range will be interpreted as a 2’s complement value.

ADQ3 Series Development Kit — User Guide spdevices.com Page 29 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

7 User Logic 2

The second user logic area (defined in user_logic2.v) uses the type 2 bus definition (Section 4.5) for

its incoming and outgoing data bus. At this point in the data path (Fig. 3), there is a data valid signal

present and the user may modify the output data stream by modulating this signal. However, creating

records of varying sizes is currently not supported but a record of infinite length is. The latter type is

created by asserting record start and valid in the same data clock cycle and new data is added to the

record by asserting valid as needed. Record stop should never be asserted for this type of record.

� Important

Creating records of varying sizes is currently not supported. Each record output by a specific channel

must either be the same length or a record with infinite length. The record length does not need to be

the same value for all channels.

� Important

It is crucial that the record framing signals output from the second user logic area have the correct

behavior with respect to the data valid signal.

� Note

A record with infinite length is created by asserting record start and valid in the same data clock cycle

and new data is added to the record by asserting valid as needed. Record stop should never be

asserted for this type of record.

� Note

The file framework/dbt2_param.vh defines constants to use when parametrizing a design in the sec-

ond user logic area.

7.1 Default Contents

By default, the first user logic area contains an example of how to interact with the data bus, how to

perform CDC synchronization and a simple test pattern generator. When activated, the test pattern

generator replaces the channel data with a monotonically increasing ramp starting from the base value

specified in BASEVALUE and incrementing by one for each sample in the parallel data word. The pattern

restarts in the next data clock cycle.

� Example

With a base value of 1000 and a parallelization of 8, the generator will output

1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1000, 1001, 1002, ...

ADQ3 Series Development Kit — User Guide spdevices.com Page 30 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

7.2 Register File

The register file for the second user logic area is defined in the file user_logic2_s_axi.v. The default

implementation provides an interface consisting of a read port and a write port to each 32-bit register

separately. The naming follows the perspective of the host computer, i.e. the read port provides the host

computer with data from the firmware and vice versa for the write port.

Adding a new register to the default implementation involves declaring a new set of matching ports and

modifying the logic (in user_logic2_s_axi.v) to target this new register when amatching bus transaction

occurs. Refer to the existing design for implementation details.

� Important

Failing to implement correct handling of the AXI bus transactions in user_logic2_s_axi.v can cause

the host computer to hang when the offending register is accessed.

The register access is controlled in the module instantiating the register file, i.e. (in user_logic2.v).
To construct a register with read and write access, connect the two corresponding ports of the register

file, creating a loopback connection. To instead construct a read-only register, ignore the write port and

provide data for the read port. Finally, to construct a write-only register, tie the read port to a constant

value. Note that registers with write-only access cannot be accessed using a masked write, since the

masking operation relies on being able to read the register’s contents. Refer to the existing design for

implementation details and examples.

7.3 Default Register File

This section documents the register file for an unmodified version of the development kit.

Name UL2ID

Offset 0

Default 0x12345678

This register contains a constant value to identify the first user logic area.

31 30 29 28 27 26 25 24

ID[31:24]

ID[23:16]

ID[15:8]

ID[7:0]

7 6 5 4 3 2 1 0

ADQ3 Series Development Kit — User Guide spdevices.com Page 31 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

Range Descriptions

Bit 31:0 – ID: Constant identification value � Read-only

This range always reads as 0x12345678 with the default user logic contents. However, the value

can be changed by modifying the HDL design.

Name UL2CONTROL

Offset 1

Default 0

This register contains the control bit for the simple test pattern generator described in Section 7.1.

31 30 29 28 27 26 25 24

TESTEN -

-

-

-

7 6 5 4 3 2 1 0

Range Descriptions

Bit 31 – TESTEN: Test pattern enable R/W

If set to 1, the default user logic will replace the data for each channel with a simple test pattern,

see Section 7.1 for additional details. The default value is 0, leaving the data for each channel

unmodified.

Name UL2BASEVALUE

Offset 2

Default 0

This register contains the base value used by the simple test pattern generator described in Section 7.1.

31 30 29 28 27 26 25 24

BASEVALUE[31:24]

BASEVALUE[23:16]

BASEVALUE[15:8]

BASEVALUE[7:0]

7 6 5 4 3 2 1 0

ADQ3 Series Development Kit — User Guide spdevices.com Page 32 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

Range Descriptions

Bit 31:0 – BASEVALUE: Test pattern base value R/W

The base value for the simple test pattern controlled via TESTEN. While the range is 32 bits wide,

only as many bits as the channel specifies will be sliced from the register, starting at the least

significant bit. The resulting range will be interpreted as a 2’s complement value.

ADQ3 Series Development Kit — User Guide spdevices.com Page 33 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

7.4 Port Control

Some ports can be controlled from the second user logic area, using three signals per port pin:

• The current value read from the pin.

• Whether the pin is configured as an input (0) or an output (1), i.e. the pin’s direction.

• The output value driven by the pin, if the pin is configured as an output.

An example of these signals for the TRIG port is shown below:

input wire ext_trig_i, // Input value�
output wire ext_trig_o, // Output value�
output wire ext_trig_direction_o, // Direction�

The input value for a pin is always accessible from the user logic area, while control of the output value

and the direction requires changing the pin’s function to ADQ_FUNCTION_USER_LOGIC. This is a configu-

ration parameter set from software, please refer to the ADQ3 Series FWDAQ User Guide [3] for more

information on how to change port functions.

� Important

The port signals are synchronous to the data clock. While the enclosing design ensures that the input

signals are CDC synchronized, it also assumes that the output and direction signals are synchronous

to the data clock. The user must take care to fulfill this requirement.

7.4.1 Port Impedance

Some ports, e.g. TRIG, allow choosing between high impedance and low impedance input modes. To

enable the low impedance mode via the development kit, the direction must be set to 1 for output, and

the output value must be driven with a fixed 0. This will effectively connect a low impedance termination

to ground in the pin’s signal path.

� Note

Output impedance cannot be contolled by the user.

7.4.2 ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe

The ports on ADQ30-PCIe, ADQ32-PCIe and ADQ33-PCIe that can be controlled from the second user

logic area are:

• TRIG, containing a single pin using single-ended signaling.

– ext_trig_i for the input value of pin 0.

– ext_trig_o for the output value of pin 0.

– ext_trig_direction_o for the direction of pin 0.

• SYNC, containing a single pin using single-ended signaling.

ADQ3 Series Development Kit — User Guide spdevices.com Page 34 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

– ext_sync_i for the input value of pin 0.

– ext_sync_o for the output value of pin 0.

– ext_sync_direction_o for the direction of pin 0.

• GPIOA, containing a single pin using single-ended signaling.

– ext_gpioa_i[0] for the input value of pin 0.

– ext_gpioa_o[0] for the output value of pin 0.

– ext_gpioa_direction_o[0] for the direction of pin 0.

• GPIOB, containing 8 pins using differential signaling.

– ext_gpiob_i[n] — input value of pin n.

– ext_gpiob_o[n] — output value of pin n.

– ext_gpiob_direction_o[n] for the direction of pin n.

• GPIOC, containing 5 pins using single-ended signaling.

– ext_gpioc_i[n] — input value of pin n.

– ext_gpioc_o[n] — output value of pin n.

– ext_gpioc_direction_o[n] for the direction of pin n.

� Note

Early revisions of ADQ32-PCIe have the connectors for GPIOB and GPIOC blocked by the heatsink

coverplate and need to have this part replaced to allow access to these pins.

The parent module propagates values for the parameters associated with these ports to the user logic

area. These values are constant for a specific development kit and cannot be modified by the user.

Table 4 lists the values for ADQ30-PCIe, ADQ32-PCIe and ADQ33-PCIe.

Table 4: Values for the port parameters in the second user logic area (ADQ30-PCIe, ADQ32-PCIe &

ADQ33-PCIe).

Parameter Value Comment

NOF_EXT_GPIOA_IN_BITS 1
NOF_EXT_GPIOA_OUT_BITS 1
NOF_EXT_GPIOA_DIRECTION_BITS 1
NOF_EXT_GPIOB_IN_BITS 8
NOF_EXT_GPIOB_OUT_BITS 8
NOF_EXT_GPIOB_DIRECTION_BITS 8
NOF_EXT_GPIOC_IN_BITS 5
NOF_EXT_GPIOC_OUT_BITS 5
NOF_EXT_GPIOC_DIRECTION_BITS 5

ADQ3 Series Development Kit — User Guide spdevices.com Page 35 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

7.4.3 ADQ36-PXIe

The ports on ADQ36-PXIe that can be controlled from the second user logic area are:

• TRIG, containing a single pin using single-ended signaling.

– ext_trig_i — input value of pin 0.

– ext_trig_o — output value of pin 0.

– ext_trig_direction_o — direction of pin 0.

• SYNC, containing a single pin using single-ended signaling.

– ext_sync_i — input value of pin 0.

– ext_sync_o — output value of pin 0.

– ext_sync_direction_o — direction of pin 0.

• GPIOA, containing 12 pins using single-ended signaling.

– ext_gpioa_i[n] — input value of pin n.

– ext_gpioa_o[n] — output value of pin n.

– ext_gpioa_direction_o[n] — direction of the pin pair {2n,2n+ 1}.

• GPIOB, containing 7 pins using differential signaling. The pins are divided into two groups with

fixed direction, i.e. the signal ext_gpiob_direction_o is ignored.

– ext_gpiob_i[n] — input value of pin n,n ∈ {0,1,2,3}.

– ext_gpiob_o[n] — output value of pin n+ 4,n ∈ {0,1,2}.

• PXIE, containing two pins using differential signaling. The pins have fixed direction.

– ext_starb_i — input value of the PXIe STARB pin.

– ext_starc_o — output value of the PXIe STARC pin.

The parent module propagates values for the parameters associated with these ports to the user logic

area. These values are constant for a specific development kit and cannot be modified by the user.

Table 5 lists the values for ADQ36-PXIe.

Table 5: Values for the port parameters in the second user logic area (ADQ36-PXIe).

Parameter Value Comment

NOF_EXT_GPIOA_IN_BITS 12
NOF_EXT_GPIOA_OUT_BITS 12
NOF_EXT_GPIOA_DIRECTION_BITS 6
NOF_EXT_GPIOB_IN_BITS 4
NOF_EXT_GPIOB_OUT_BITS 3
NOF_EXT_GPIOB_DIRECTION_BITS 4 Ignored due to fixed direction

ADQ3 Series Development Kit — User Guide spdevices.com Page 36 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

8 Timing Closure

In the event of timing closure problems, please follow these guidelines:

1. Run devkit_analyze as described in Section 3.6 and fix any reported issue. Pay special attention
to resolve any excessive logic level.

2. Review the failing paths and surrounding logic in Vivado’s schematic viewer.

3. Carefully review that you conform with the recommendations in Timing ClosureQuick Reference

Guide (UG1292)” [5]. For detailed information see UltraFast Design Methodology User Guide

Guide (UG949) [2].

ADQ3 Series Development Kit — User Guide spdevices.com Page 37 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

9 Troubleshooting

This section aims to provide guidance when troubleshooting unexpected behavior. It is recommended

that the user application is written in a robust manner, able to capture and report error codes from failed

ADQAPI function calls. In the event of a function call failure, reading the ADQAPI trace log for addi-

tional information is a useful first step. Trace logging must be activated by calling ADQControlUnit_-
EnableErrorTrace() with the trace_level argument set to 3.

If the error message is difficult to interpret, the Teledyne SP Devices support can be reached via

e-mail at spd_support@teledyne.com. Make sure to include a trace log file from a run where the error

appears.

However, the support team cannot help the user with issues originating in the user’s custom design

in any of the user logic areas. Additionally, no training sessions on the topic of HDL design will be offered

free of charge.

When facing a problem localized to the custom user logic design, Section 9.1 provides one possible

way forward in those situations.

� Important

Teledyne SP Devices’ support cannot help with issues localized to the user’s custom logic design nor

offer training for HDL design concepts.

9.1 Debugging on Hardware

The section describes one possible workflow for setting up and connecting to a Xilinx debug core. Refer

to the Xilinx documentation for further instructions. A good starting point is the Vivado Programming and

Debugging User Guide [6].

� Warning

Debugging on hardware requires physical access to the JTAG port on the digitizer PCB.

9.1.1 Creating the Debug Core

1. Mark the signals as debug with the mark_debug property, for example in Verilog:

(* mark_debug = ”true” *) wire signal_to_debug;

Setting the mark_debug property makes the signals available in the debug wizard and ensures that

the tool will not remove the signals in optimization.

2. Synthesize the design by clicking on Run Synthesis and wait for Vivado to finish synthesizing the

complete design.

3. Open the synthesized design by clicking on Open Synthesized Design.

4. Open the debug wizard by clicking on Setup Debug and follow the instructions.

5. Close and save the synthesized design. When asked for a target file to write constraints to, choose

to create a new file, to avoid affecting the constraint files of the development kit framework.

ADQ3 Series Development Kit — User Guide spdevices.com Page 38 of 40

mailto:spd_support@teledyne.com?body=<Please attach a trace log file>
https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

6. Under the Design Runs tab, if the synth_1 step is listed as out of date, right click and choose Force
Up-To-Date.

7. Generate the bitstream by clicking on Generate bitstream.

8. When the process has finished, run the Tcl command

devkit_mcs

9. The generated files are found in

• artifacts/latest/devkit.ltx

• artifacts/latest/devkit.mcs

• artifacts/latest/devkit.bit

10. Program the firmware image (.mcs file) using ADQUpdater. Refer to the ADQUpdater user guide

for instructions on how to manage the firmware on the ADQ3 series digitizer [1].

9.1.2 Connecting to the Debug Core

The Vivado hardware manager is used to connect to the debug core. Connecting to the debug core

requires:

• that the .mcs file with core has been programmed; and

• that the .ltx file is available.

Depending on the clock signals chosen for the debug core, the firmware may have to be initialized before

the Vivado hardware manager can find the debug core. For details on initialization, refer to the user guide

for the ADQ3 series user guide [3].

� Important

The clock used for the debug core must be running for the core to function.

1. Connect the Xilinx platform cable to the digitizer’s JTAG port.

2. Start Vivado and click on Open Hardware Manager.

3. Click on Open Target and chose Auto Connect.

4. In the trigger setup window, click on Specify probe file and refresh device.

5. Browse to the debug_nets.ltx file and click on refresh.

Refer to the Vivado Programming and Debugging User Guide [6] for further instructions.

ADQ3 Series Development Kit — User Guide spdevices.com Page 39 of 40

https://www.spdevices.com

Classification Revision

Public 2023.2

Document ID Date

20-2507 2023-05-02

References

[1] Teledyne Signal Processing Devices SwedenAB, 18-2059 ADQUpdater User Guide. Technical Man-

ual.

[2] Xilinx Inc., UltraFast Design Methodology, August 2020. User Guide (UG949).

[3] Teledyne Signal Processing Devices SwedenAB, 21-2539 ADQ3 Series User Guide. Technical Man-

ual.

[4] C. E. Cummings, “Clock domain crossing (CDC) design & verification techniques using SystemVer-

ilog,” in SNUG 2008 proceedings, (Boston, MA, USA), Sunburst Design, Inc., 2008.

[5] Xilinx Inc., UltraFast Design Methodology Timing Closure, June 2020. Quick Reference Guide

(UG1292).

[6] Xilinx Inc., Programming and Debugging, June 2020. User Guide (UG908).

ADQ3 Series Development Kit — User Guide spdevices.com Page 40 of 40

https://www.spdevices.com

Worldwide Sales and Technical Support

spdevices.com

Teledyne SP Devices Corporate Headquarters

Teknikringen 8D

SE-583 30 Linköping

Sweden

Phone: +46 (0)13 645 0600

Fax: +46 (0)13 991 3044

Email: spd_info@teledyne.com

Copyright © 2023 Teledyne Signal Processing Devices Sweden AB

All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.

https://spdevices.com
mailto:spd_info@teledyne.com

	Introduction
	Definitions and Abbreviations

	Prerequisites
	Development Environment and Tools
	Unpacking the Development Kit
	Opening the Development Kit
	Setting Up the Project
	Configuration

	Building the Design
	Working with the Design
	Typical Design Flow

	Analyzing the Implemented Design

	General Concepts
	Parallel Digital Design
	Data Flow
	Clock Domain Crossing Synchronization
	CDC Synchronization of a 1-bit Signal
	CDC Synchronization of a Multi-Bit Signal

	AXI Control Bus
	Control Bus Signals

	Data Bus
	Two Bus Definitions

	Data Bus Signals
	Timestamp
	Timestamp Synchronization
	Sample Index
	Count
	Event

	Trigger
	Sample Index
	Sample Index Fraction
	Rising
	Event
	Inhibit

	Overrange
	General Purpose
	Sample Data
	Valid
	Record
	Start, Start Index, Stop and Stop Index
	Number

	User ID
	Differences relative to ADQ14, ADQ7 and ADQ8

	User Logic 1
	Default Contents
	Register File
	Default Register File

	User Logic 2
	Default Contents
	Register File
	Default Register File
	Port Control
	Port Impedance
	ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe
	ADQ36-PXIe

	Timing Closure
	Troubleshooting
	Debugging on Hardware
	Creating the Debug Core
	Connecting to the Debug Core

