

ADQ1600RF Datasheet 14-1322-B 2017-10-04 1(9)

ADQ1600RF

ADQ1600RF is a unique member of the ADQ V6 Digitizer family. Based on SP Devices' interleaving technologies ADX and DBS, ADQ1600RF gets true 14 bits performance at a sampling rate of 1.6 GSPS. This is an outstanding combination of high bandwidth and dynamic range, which enables demanding measurements such as direct RF/IF sampling of wide band systems.

Introduction

The ADQ1600RF delivers 14 bits resolution at the sampling rate 1.6 GSPS. The high sample rate combined with the unique dynamic range is tailored for RF/IF sampling of wide band signals.

The ADQ1600RF offers an easy-to-use API that allows easy integration into any application. The digitizer connects to the host via a SuperSpeed USB cable for stand-alone operation. It is also available in cPCIe / PXIe / Micro-TCA.4 form factor for modular instrumentation and in PCIe form factor for compact integration in a stationary PC.

The ADQ1600RF is equipped with a powerful Xilinx V6 LX240T FPGA which is partly available for customized real-time applications.

ADQ1600RF Development Kit

SP Devices' ADQ1600RF Development Kit is an optional tool for integrating custom real-time signal processing in the FPGA. The custom firmware is easily integrated into the digitizer's standard functions to enhance the capabilities of demanding signal analysis. More details about this product can be found in the datasheet for the ADQ Development Kit.

Ordering information

ORDERING INFORMATION	
Order code	ADQ1600RF
AVAILABLE OPTIONS	
USB3 interface	–USB
cPCIe / PXIe interface	–PXIE
PCIe interface	-PCIE
Micro-TCA interface	-MTCA
RELATED PRODUCTS	
ADQ1600RF Development Kit	

Features

- 1 analog input channel
- 1.6 GSPS sampling rate
- 14 bits resolution
- 750 MHz analog bandwidth (–3dB)
- Internal and external clock reference
- Internal and external clock source
- Clock reference output
- External trigger input and output
- Internal trigger pulse generator
- Time stamp
- Multi-record >1 MHz PRF
- 512 Msamples data memory
- Data interface USB 3.0 / cPCIe / PXIe / PCIe / Micro-TCA
- 3.5 GBytes/s data transfer rate on Gen2 by 8 lanes
- FPGA open for real-time custom applications

Applications

- RADAR
- LIDAR
- Wireless communication
- Optical transmission
- High-speed data recording
- Test and measurement
- Ultrasonic ranging

1 Technical data¹

Table 1:

ANALOG INPUT		
Number of channels	1	
Digitizer Resolution	14	bits
Sample rate	1600	MSPS
SFDR @ 62 MHz	85	dB
SNR @ 62 MHz	69	dB
THD @ 62 MHz	-83	dBc
Impedance AC	50	Ω
Input voltage range	2.2	V _{pp}
Analog bandwidth (–3dB)	30 Hz – 750 MHz	
Connector	SN	ЛА

Table 2:

EXTERNAL CLOCK SOURCE				
Frequency FS MHz				
Signal level (min – max)	0 – 10	dBm		
	0.64 – 2	Vpp		
Impedance AC	50	Ω		
Duty cycle	50%			
Connector	SMA			

Table 3:

CLOCK REFERENCE INPUT			
Internal clock reference			
Frequency	10	MHz	
Accuracy	\pm 5 \pm 0.5/y	ppm	
External clock reference			
Frequency (min – max) 1 – 250 MHz			
Signal level (min – max)	0.8 – 3.3	V _{PP}	
Impedance AC	50	Ω	
Duty cycle	50% ± 5%		
Connector	MCX		
PXIe clock reference ¹			
PXIe clock 100 MHz			
PXIe sync ²	10	MHz	

1. Available on PXIe form factor only.

2. Jitter reduced by PXIe clock in digitizer.

Table 4:

CLOCK REFERENCE OUTPUT			
Frequency	Same as clock reference		
Signal level	3.3 V _{PP}		
Impedance AC	50 Ω		
Duty cycle	50% ± 5%		
Connector	MCX		

Table 5:

EXTERNAL TRIGGER INPUT					
Input impedance DC 50 Ω					
Input range (min – max) –0.4 to 2.4 V					
Threshold rising/falling edge	500	mV			
Sensitivity	200	mV			
Jitter	25	ps			
Resolution	1/FS	S			
Connector	MCX				

Table 6:

TRIGGER OUTPUT		
Output impedance	30	Ω
Output (low – high)	0.1 – 3.2	V
Connector Trigger	MCX	

Table 7:

GPIO		
Number of GPIO	5	
Output impedance pin #5	33	Ω
Output impedance pin #1-4	100	Ω
Output (low – high) ¹	0.1 – 3.2	V
Input impedance	10	kΩ
Input (low – high)	1 – 2.3	V
Connector	Micro DSUE	3 9 way

1. Unloaded condition.

Table 8:

POWER SUPPLY		
Supply Voltage	12	V
Power	40	W
Connector USB	Included power supply	
Connector PCIe	6-pin ATX power	
Connector cPCIe/PXIe	from slot	
Connector MTCA	from slot	

Table 9:

CERTIFICATION AND COMPLIANCE
CE

Table 10:

LED INDICATORS		
Power	Green	Power up
Ready	Yellow	Waiting for trigger
Status	Red	Flashing overheat

1. All values are typical unless otherwise noted.

2 Architecture

2.1 Block diagram

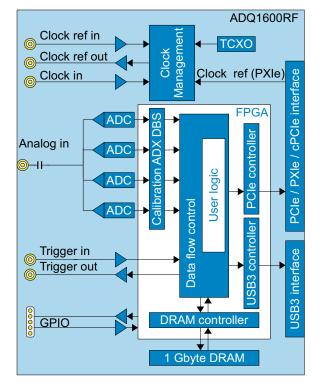


Figure 1: Block diagram.

A block diagram is shown in Figure 1.

2.2 Analog front-end

The analog front-end is AC-coupled and terminated to 50 ohms for optimal linearity and noise performance during RF/IF measurements.

2.3 Interleaving Technology ADX and DBS

The unique sample rate, 1600 MSPS with maintained 14 bits performance, is achieved by interleaving four ADCs. Typical interleaving artifacts are removed by SP Devices' proprietary interleaving technology ADX, which run in the FPGA.

2.4 Digital data format

The ADQ1600RF is a 14-bit digitizer but the word length is extended to 16 bits (MSB aligned) internally to allow for performance improvement through digital calibration and interleaving correction. This word extension is also beneficial for situations where custom firmware is added through use of the ADQ1600 Development Kit.

3 Dynamic performance¹

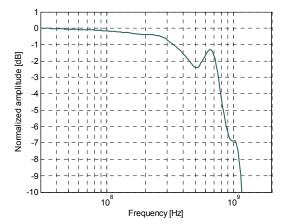


Figure 2: Input signal frequency response.

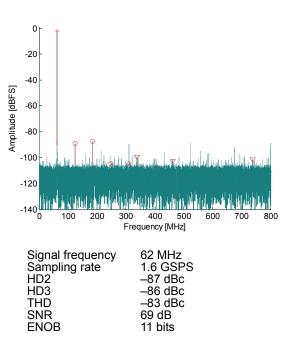


Figure 3: Typical spectrum at 62 MHz.

1. All values are typical unless otherwise noted.

4 Functional overview

4.1 Data recording

There are several methods for data recording to serve different use cases;

- Multi-record recording in on-board DRAM for very long records.
- Continuous multi-record via on-board DRAM for acquisition of long records during long measurement time.
- Continuous streaming of data to the host PC for real-time analysis of data¹.

To support data recording, there is on-board DRAM of 1 GBytes. The interface to the host PC enables up to 3.5 GBytes/s over a Gen2 x8 PCIe interface.

4.2 Signal processing

There is support for real-time signal processing on the digitizer;

- · Real-time waveform averaging.
- Level trigger for event detection.
- · Gain and offset calibration.
- Sample skip for data rate reduction.
- Custom real-time signal processing can be implemented using the ADQ1600RF Development Kit.

4.3 Trigger

There are several trigger modes;

- External trigger for synchronization
- Level trigger for data driven acquisition
- Software trigger for user's control
- Internal trigger for automatic sequencing

There is also a trigger output for triggering external equipment. The trigger timing is controlled by pre-trigger buffer and trigger hold-off parameter settings.

4.4 Clock

There are several modes for clocking the digitizer;

- Internal clock for stand alone operation
- External clock for synchronization

• External clock reference for synchronization There is also a clock reference output for clocking external equipment.

4.5 GPIO

There are 5 GPIO pins for real-time communication with external equipment. The GPIOs are controlled from software, but can also be accessed from the ADQ1600RF Development Kit for integration in a real-time control system.

GPIO pin #2 may also be used for timestamp synchronization signal, for example a GPS 1 PPS.

The connector is Micro DSUB 9 way plug. A suitable socket with lead is for example MOLEX 83421-9044.

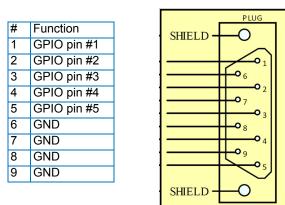


Figure 4: GPIO connector.

5 Absolute maximum ratings

Exposure to conditions exceeding these ratings may reduce lifetime or permanently damage the device.

The ADQ1600RF has a built-in fan to cool the device. The built-in temperature surveillance unit will protect the ADQ1600RF from overheating by temporarily shutting down parts of the device in such a situation.

The SMA connectors have an expected life time of 500 operations. For frequent connecting and disconnecting of cables, connector savers are recommended.

If the host PC does not support full speed data transfer, data reduction in the FPGA is required. Sample skip and waveform averaging are included methods for this. Other data reduction can be achieved by implementing a custom algorithm using the ADQ1600RF Development Kit.

Table 11:

ABSOLUTE MAXIMUM RATINGS			
	MIN	MAX	
Supply voltage (to GND)	–0.4 V	14 V	
Trigger input (to GND)	–3 V	3.7 V	
Clock ref (AC)		3.3 V _{PP}	
GPIO input (to GND) ¹	–1 V	4.6 V	
Ambient temperature (operation)	0 ºC	45 ⁰C	
Analog inputs			
AC		5 V _{pp}	
DC	–5 V	5 V	

1. A voltage on a GPIO input higher than 3.3 V may change the output voltage on GPIOs which are set to outputs. This may damage external equipment.

6 Software tools

6.1 Operating systems

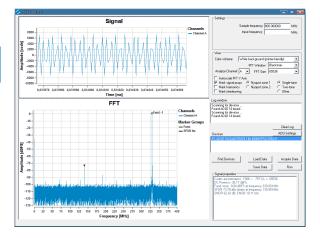
The software package includes drivers for the main operating systems.

Table 12:

OPERATING SYSTEM		
Windows XP	SP 2 and higher	
Windows Vista	All versions	
Windows 7	32 bit and 64 bit	
Windows 8	32 bit and 64 bit	
Linux ¹	Kernel 2 and 3, 32 and 64 bits	

1. Contact SP Devices sales representative for information about distributions.

6.2 ADCaptureLab


The ADQ1600RF is supplied with the ADCaptureLab software that provides quick and easy control of the digitizer. The tool also offers both time domain and frequency domain analysis, see **Figure 5**. Data can be saved in different file formats for off-line analysis. With ADCaptureLab, the ADQ1600RF operate as a desktop oscilloscope.

Please note that ADCaptureLab is available for Windows only.

6.3 Software development kit (SDK)

The ADQ1600RF digitizer is easily integrated into the application by using the software development kit. The SDK is included with the ADQ1600RF.

The SDK includes programming examples and reference projects for C/C++ and MATLAB. The

Figure 5: ADCaptureLab (Typical)

ADQAPI user's guide in detail describes all functions. A set of examples and application notes simplify the integration process.

Using the SDK enables rapid custom processing of large amounts of data and real-time control of the digitizer.

Table 13:

APPLICATION SOFTWARE		
ADCaptureLab Data capture and analysis		
MATLAB	Data capture API, examples	
C/C++	Data capture API, examples	
Python	Limited example scripts	
LabView ¹	Limited support	

1. Contact SP Devices sales representative for guidance.

7 Data interface options

The ADQ1600RF is available in several form factors to suit various integration situations. The form factor sets the communication interface to the host PC as well as the mechanical properties of the ADQ1600RF.

The SuperSpeed USB (USB 3.0) interface is intended for stand alone operation and integration into the sensor system rather than the host PC.

The cPCIe, PXIe and M-TCA.4 from factors are intended for integration into a rack for modular instrumentation or large scale acquisition.

The PCIe form factor is for integration into the host PC. The board is half length to enable compact solutions.

Also the PCI-Express based models are equipped with a USB2.0 interface. It is intended for restoring the system if a custom firmware has failed.

7.1 USB 3.0 interface

With the USB 3.0 interface, the digitizer is easily connected to any computer.^{1, 2}

Table 14:

USB INTERFACE		
Standard	USB3	
Data rate sustained ¹	180	MB/s
Box size	53 x 106 x 166	mm3

1. This is depending on the capacity of the complete system including the selected PC.

(a) Front panel

(b) Rear panel

Order code: -USB

2. Note that only one digitizer at the time can be connected to a PC.

7.2 cPCle / PXle interface

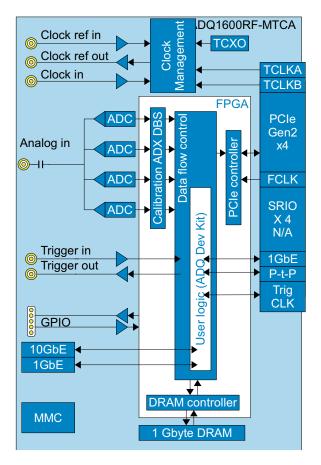
The ADQ1600RF is available with cPCIe / PXIe interface.

Table 15:

cPCIe / PXIe INTERFACE		
Bus width	8	lanes
Bus peak capacity	16	Gbit/s
Sustained data rate ¹	3.5	GByte/s
PXIe card size	3U 2 slot 8TE	

1. This is depending on the capacity of the complete system including the selected PC.

Figure 7: ADQ1600RF–PXIE front panel.


Order code: –PXIE

USB 3.0 form factor is only supported under Windows 7 and Windows 8. Please contact an SP Devices sales representative for information about Linux support.

7.3 Micro-TCA interface

The ADQ1600RF is available with digital back-end and interfaces for Micro-TCA chassis, **Figure 8**.

Figure 8: Block diagram of ADQ1600-MTCA.

Table 16:

MICRO-TCA BOARD SIZE	
Board width	Double width
Board height	Mid-size

Some of the pins in the backplane connector are used for the standard digitizer functions. Some are available for custom design using the ADQ1600RF Development Kit for custom implementations only.

Table 17:

MICRO-TCA INTERFACE			
Signal	Port	Status	
1GbE	0	ADQ1600RF Dev Kit	
PCle	4-7	Standard	
Point-to-point	12-15	ADQ1600RF Dev Kit	
Trigger, Data, Clocks	17-20	ADQ1600RF Dev Kit	
TCLKA	Clk 1	Standard	
TCLKB	Clk 2	Standard	
FCLKA	Clk 3	Standard	

Table 18:

FRONT PANEL ADDITIONAL INTERFACE			
Signal Connector ¹ Status			
1 GbE	SFP	ADQ1600RF Dev Kit	
10 GbE	SFP+	ADQ1600RF Dev Kit	

1. SFP+ and SFP modules are not included.

LED Red error LED Green Operating OK 10 GbE SFP+

1 GbE SFP

GPIO Micro D 9-w plug

USB 2.0	Mini-B		
Ext Clock	SMA		
Trig out	MMCX		
Trig in	MMCX		
Clk ref out	MMCX		
Clk ref in	MMCX		
Analog input	SMA		
LED Yellow Ready			
LED Red/Green Power/Status			
LED Blue hot swap			
Handle			

Figure 9: Typical Micro-TCA card

Order code: –MTCA

7.4 PCI Express interface

The PCI Express interface is intended for integration in a PC.

Table 19:

PCIe INTERFACE		
Data rate	Gen2	
Bus width electrical	8	lanes
Sustained data rate, 8 lanes ¹	3.5	GByte/s
Bus width mechanical ²	16	lanes
Board height	2	slots
Board length (half length)	167	mm

- 1. This is depending on the capacity of the complete system including the selected PC.
- 2. The wide contact is required to support the weight of the board.

Figure 10: ADQ1600RF–PCIE front panel.

Order code: -PCIE

Important Information

Teledyne Signal Processing Devices Sweden AB (Teledyne SP Devices) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Teledyne SP Devices' general terms and conditions supplied at the time of order acknowledgment.

Teledyne SP Devices warrants that each product will be free of defects in materials and workmanship, and conform to specifications set forth in published data sheets, for a period of one (1) year. The warranty commences on the date the product is shipped by Teledyne SP Devices. Teledyne SP Devices' sole liability and responsibility under this warranty is to repair or replace any product which is returned to it by Buyer and which Teledyne SP Devices determines does not conform to the warranty. Product returned to Teledyne SP Devices for warranty service will be shipped to Teledyne SP Devices at Buyer's expense and will be returned to Buyer at Teledyne SP Devices' expense. Teledyne SP Devices will have no obligation under this warranty for any products which (i) has been improperly installed; (ii) has been used other than as recommended in Teledyne SP Devices' installation or operation instructions or specifications; or (iii) has been repaired, altered or modified by entities other than Teledyne SP Devices. The warranty of replacement products shall terminate with the warranty of the product. Buyer shall not return any products for any reason without the prior written authorization of Teledyne SP Devices.

In no event shall Teledyne SP Devices be liable for any damages arising out of or related to this document or the information contained in it.

TELEDYNE SP DEVICES' EXPRESS WARRANTY TO BUYER CONSTITUTES TELEDYNE SP DEVICES' SOLE LIABILITY AND THE BUYER'S SOLE REMEDY WITH RESPECT TO THE PROD-UCTS AND IS IN LIEU OF ALL OTHER WARRANTIES, LIABILITIES AND REMEDIES. EXCEPT AS THUS PROVIDED, TELEDYNE SP DEVICES DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

TELEDYNE SP DEVICES DOES NOT INDEMNIFY, NOR HOLD THE BUYER HARMLESS, AGAINST ANY LIABILITIES, LOSSES, DAMAGES AND EXPENSES (INCLUDING ATTORNEY'S FEES) RELAT-ING TO ANY CLAIMS WHATSOEVER. IN NO EVENT SHALL TELEDYNE SP DEVICES BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFIT, LOST DATA AND THE LIKE, DUE TO ANY CAUSE WHATSOEVER. NO SUIT OR ACTION SHALL BE BROUGHT AGAINST TELEDYNE SP DEVICES MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS ACCRUED. IN NO EVENT SHALL THE ACCRUED TOTAL LIABILITY OF TELEDYNE SP DEVICES FROM ANY LAWSUIT, CLAIM, WARRANTY OR INDEMNITY EXCEED THE AGGREGATE SUM PAID TO SP BY BUYER UNDER THE ORDER THAT GIVES RISE TO SUCH LAWSUIT, CLAIM, WARRANTY OR INDEMNITY.

Worldwide Sales and Technical Support

www.spdevices.com

Teledyne SP Devices Corporate Headquarters

Teknikringen 6 SE-583 30 Linköping Sweden Phone: +46 (0)13 465 0600

Fax: +46 (0)13 991 3044 Email: info@spdevices.com

Copyright © 2017 Teledyne Signal Processing Devices Sweden AB. All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.