
ADQ3 Series Digitizers
User Guide

Author(s): Teledyne SP Devices

Document ID: 21-2539

Classification: Public

Revision: 2025.1.1

Date: 2025-04-16

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Contents

1 Introduction 7

1.1 Overview . 7

1.2 How to Read This Document . 10

1.3 Firmware Types . 10

1.3.1 Standard Data Acquisition Firmware (FWDAQ) . 10

1.3.2 Advanced Time-Domain Firmware (FWATD) . 10

1.3.3 Pulse Detection Firmware (FWPD) . 10

1.4 The First Acquisition . 11

1.5 Definitions and Abbreviations . 12

2 Analog Front-End 13

2.1 Input Range . 13

2.2 Variable DC Offset . 13

3 ADC 14

4 Clock System 16

4.1 Sampling Clock Generation . 16

4.2 Reference Clock . 17

5 Signal Processing 18

5.1 Digital Gain and Offset . 18

5.2 Sample Skip . 18

5.3 Digital Baseline Stabilization (DBS) . 19

5.3.1 Typical Setup Routine . 20

5.3.2 Advanced Usage . 20

5.4 FIR Filter . 21

5.4.1 Filter Design Example . 22

5.5 PDRX . 24

5.5.1 Hardware and Firmware License . 25

5.5.2 Channel Combination . 26

5.6 ATD . 27

5.6.1 FWATD Firmware and License . 28

5.6.2 Accumulator . 28

5.6.3 Threshold Filter . 30

5.6.4 Limitations . 31

5.6.5 Accumulation Grid Synchronization . 32

5.6.6 Overflow . 34

5.7 PD . 35

5.7.1 FWPD Firmware and License . 36

5.7.2 Pulse Analysis . 36

5.7.3 Data Format . 37

5.7.4 Limitations . 37

ADQ3 Series Digitizers — User Guide spdevices.com Page 1 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.7.5 Peak Value and Position . 40

5.7.6 Full Width at Half Maximum (FWHM) . 40

5.7.7 Area . 43

5.7.8 Examples . 44

6 Event Sources 48

6.1 Trigger Events . 48

6.2 Software . 48

6.3 Periodic . 49

6.3.1 Synchronization . 49

6.4 Signal Level . 50

6.5 Signal Level Matrix . 52

6.6 Port TRIG . 53

6.7 Port SYNC . 54

6.8 Port GPIOx . 54

6.9 Port PXIe . 54

6.10 Matrix . 55

6.11 Reference Clock Synchronization . 56

7 Functions 58

7.1 Pattern Generator . 58

7.1.1 Operation . 59

7.1.2 Count . 59

7.1.3 Source . 59

7.1.4 Reset Source . 60

7.1.5 Output Value . 60

7.1.6 Examples . 61

7.2 Pulse Generator . 64

7.3 Timestamp Synchronization . 65

7.4 Daisy Chain . 67

7.4.1 Structure . 67

7.4.2 Phase One: Synchronizing the Timing Grid . 69

7.4.3 Phase Two: Continuous Operation . 70

7.4.4 Example: ADQ32-PCIe . 71

7.4.5 Example: ADQ36-PXIe . 72

7.4.6 Limitations . 74

7.4.7 Configuration . 76

7.4.8 Runtime Error Reporting . 78

7.5 Fractional-N PLL . 80

8 Ports 81

8.1 Connector Map . 82

8.1.1 ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe, ADQ35-PCIe 82

8.1.2 ADQ36-PXIe . 84

8.2 Single-Ended Signaling . 87

ADQ3 Series Digitizers — User Guide spdevices.com Page 2 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

8.3 Differential Signaling . 87

8.4 Power . 88

8.5 Clock . 88

8.6 Pin Configuration . 89

8.6.1 Example: Pattern Generator Output . 90

8.6.2 Example: Pulse Generator Output . 91

8.6.3 Example: Software Controlled GPIO . 92

8.6.4 Example: Reference Clock Output . 93

9 Data Acquisition 94

9.1 Dynamic Record Length . 95

9.1.1 Edge Windows . 96

9.1.2 Overlap and Maximum Length . 96

9.1.3 Zero Suppression for Unipolar Pulse Data . 97

9.1.4 Gated Acquisition . 99

9.2 Rearm Time . 99

9.3 Timing Information . 100

9.3.1 Floating Point Inaccuracies . 101

9.4 Starting and Stopping . 101

9.5 Trigger Blocking . 102

9.5.1 Zero Length Records . 102

10 Data Transfer and Data Readout 104

10.1 Transfer Buffers . 105

10.1.1 Advanced Parameters . 105

10.2 Marker Buffers . 107

10.2.1 Advanced Use Cases . 107

10.3 Data Format . 108

10.4 Data Transfer . 108

10.4.1 Interface . 108

10.4.2 Program Flowchart . 109

10.4.3 Record Data Transfer Buffer Format . 112

10.4.4 Metadata Transfer Buffer Format . 112

10.5 Data Readout . 113

10.5.1 Interface . 113

10.5.2 Record Buffers . 113

10.5.3 Program Flowchart . 114

10.5.4 Status Events . 117

10.5.5 Zero Length Records . 117

10.5.6 Discarded Records . 118

10.5.7 Incomplete Records . 118

10.5.8 Optimizing Throughput . 119

10.6 Overflow . 120

10.6.1 Physical Interface (case 1) . 121

10.6.2 Transfer Interface (case 2) . 121

ADQ3 Series Digitizers — User Guide spdevices.com Page 3 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10.6.3 Continue on Overflow . 122

10.7 Eject . 123

10.8 Compression . 125

10.8.1 Amended Code to Voltage Conversion . 126

10.9 Calculating the Data Rate . 127

11 Test Pattern 128

12 System Manager 129

12.1 Firmware . 129

12.1.1 Channel Configuration . 129

12.2 License Management . 130

12.3 Temperature Monitoring . 131

12.3.1 Overtemperature Margin . 131

12.3.2 Overtemperature Protection . 132

12.4 Fan Control . 134

12.4.1 Example . 135

13 Front Panel LEDs 136

13.1 STAT . 136

13.2 RDY . 136

13.3 USER . 136

14 EEPROM 137

15 API 138

15.1 SDK Installation . 139

15.1.1 Installing the SDK (Windows) . 139

15.1.2 Installing the SDK (Linux) . 139

15.2 Software Examples . 140

15.3 Identification . 140

15.4 Initialization . 141

15.4.1 Clock System . 141

15.4.2 Input Routing . 142

15.5 Configuration . 143

15.6 Acquisition . 143

15.7 Cleanup . 145

15.8 Parameter Space . 146

15.8.1 In Practice . 147

15.8.2 JSON . 148

16 Python API 150

16.1 Installation . 151

ADQ3 Series Digitizers — User Guide spdevices.com Page 4 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A API Reference 153

A.1 Defines . 153

A.2 Enumerations . 161

A.3 Structures . 192

A.3.1 Initialization Parameters . 195

A.3.2 Configuration Parameters . 198

A.3.3 Status . 271

A.3.4 Data . 280

A.3.5 Other . 287

A.4 Functions . 288

A.4.1 General . 290

A.4.2 Identification . 291

A.4.3 Parameter Interface . 294

A.4.4 Data Acquisition . 303

A.4.5 Data Transfer . 305

A.4.6 Data Readout . 307

A.4.7 Status Monitoring . 310

A.4.8 Cleanup . 313

A.4.9 EEPROM . 314

A.4.10 Miscellaneous . 316

A.4.11 Development Kit . 318

A.5 Error Codes . 320

B PCIe 16-Lane Mode 322

B.1 Configuration . 322

B.2 Forced 8-Lane Mode . 323

C Hugepages 324

C.1 Host Configuration . 324

C.2 Mapping and Unmapping . 324

C.3 Example . 325

ADQ3 Series Digitizers — User Guide spdevices.com Page 5 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Document History

Section Description

Revision 2025.1.1 2025-04-16

5.5 Remove sections documenting no longer supported PDRX functionality: equalizer,

reflection filter andAC-coupling compensation. The associatedAPI parameters have

been declared Reserved.

Revision 2025.1 2024-12-19

Revision 2024.2 2024-09-27

Revision 2024.1 2024-05-03

Revision 2023.3 2023-11-21

Revision 2023.2 2023-05-02

Revision 2023.1 2023-01-26

Revision D 2022-04-08

Revision C 2021-06-21

Revision B 2021-02-12

Revision A 2021-02-08

ADQ3 Series Digitizers — User Guide spdevices.com Page 6 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

1 Introduction

This document is the user guide forADQ3 series digitizers running the standard data acquisition firmware

(FWDAQ), the advanced time-domain firmware (FWATD) or the pulse detection firmware (FWPD).

� Important

This document is only valid for the following digitizer models:

• ADQ30-PCIe

• ADQ32-PCIe

• ADQ33-PCIe

• ADQ35-PCIe

• ADQ36-PXIe

� Release 2025.1.1

This document describes the state of ADQ3 series digitizers with firmware and software artifacts from

release 2025.1.1. Unless otherwise stated, this document is also valid for any subsequent patch

release. These append an additional number at the end of the release label. For example, 2023.1.1

would be the first patch release of the major release 2023.1.

1.1 Overview

Fig. 1 presents a block diagram of the functional decomposition of an ADQ3 series digitizer. Refer to the

following sections for details on the respective components:

• Section 2 presents the analog front-end and its functions.

• Section 3 presents the analog-to-digital converter.

• Section 4 presents the clocking system.

• Section 5 presents the signal processing modules.

• Section 6 presents the event source system.

• Section 7 presents the function modules.

• Section 8 presents the ports.

• Section 9 presents the data acquisition process.

• Section 10 presents the data transfer and data readout processes.

• Section 11 presents the test pattern generator.

• Section 12 presents the system manager.

ADQ3 Series Digitizers — User Guide spdevices.com Page 7 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• Section 13 presents the front panel LEDs and their function.

• Section 14 presents the nonvolatile storage capabilities.

• Section 15 presents the application programming interface.

• Section 16 presents the Python wrapper for the application programming interface.

• Appendix A presents the API reference documentation.

ADQ3 Series Digitizers — User Guide spdevices.com Page 8 of 327

https://www.spdevices.com

C
la
s
s
ific

a
tio

n
R
e
v
is
io
n

P
u
b
lic

2
0
2
5
.1
.1

D
o
c
u
m
e
n
t
ID

D
a
te

2
1
-2
5
3
9

2
0
2
5
-0
4
-1
6

To clock system

Clock
system

Test patternADC Signal
processing

Data
acquisition

Transfer
buffers

Signal level

Channel A

Port CLK

Analog
front-end

On-board
memory

Digitizer Endpoint

Physical
interface

API

Data transfer and readout

Functions

Pattern
generators

Pulse
generators

Timestamp
synchronization

Internal event sources

Software

Periodic

Port PXIe
Only ADQ36-PXIe

Only ADQ36-PXIe
PXIe clock reference

Port TRIG

Function

See section Ports for details

Port SYNC

Function

See section Ports for details

Clock reference

STARC
Function

STARB

See section Ports for details

Port GPIOA, GPIOB & GPIOC
Only ADQ36-PXIe

GPIOA0
GPIOB0

See section Ports for details

Function

See section Ports for details

Only ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe and ADQ35-PCIe
Port GPIOA

Matrix

Signal level matrix

User application

F
ig
u
re

1
:
A
b
lo
c
k
d
ia
g
ra
m
p
re
s
e
n
tin
g
a
n
o
v
e
rv
ie
w
o
f
a
n
A
D
Q
3
s
e
rie
s
d
ig
itiz

e
r.
T
h
e
s
y
m
b
o
l

is
u
s
e
d

to
in
d
ic
a
te
a
n
e
v
e
n
t
s
o
u
rc
e
(s
e
e
S
e
c
tio
n
6
).
T
h
e
a
v
a
ila
b
le
p
o
rts

d
e
p
e
n
d
s
o
n
th
e
d
ig
itiz

e
r
m
o
d
e
l,
re
fe
r
to

S
e
c
tio
n
8
fo
r
m
o
re
in
fo
rm
a
tio
n
.

A
D
Q
3
S
e
rie
s
D
ig
itiz

e
rs
—

U
s
e
r
G
u
id
e

s
p
d
e
v
ic
e
s
.c
o
m

P
a
g
e
9
o
f
3
2
7

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

1.2 How to Read This Document

This document is not intended to be read from cover to cover. It is a reference manual for the full digitizer

system and should be used to learn about the many available features as needed. Not all use cases will

utilize every feature offered by the digitizer. However, there are a few must-read sections:

• The event source system (Section 6).

• The data acquisition process (Section 9).

• The data transfer and readout processes (Section 10).

• The application programming interface (Section 15).

Text appearing in this color represents hyperlinks leading to another location in the document. Hyperlinks

are extensively used to make it easier to navigate the content. Thus, using a PDF reader is more effective

than reading this document in printed form.

The digitizer’s behavior is controlled via parameters. These appear as hyperlinks typeset with a

typewriter font, e.g. record_length, and are interwoven with the text. The technical details of how to

apply a specific value to a parameter is described in Section 15.5, which outlines the configuration phase.

1.3 Firmware Types

The ADQ3 series digitizers support several different firmware types. Apart from the standard data acqui-

sition firmware, their purpose is to specialize the digitizer to tackle domain-specific acquisition problems

with greater efficiency—trading off generic acquisition properties for significant improvements in other

areas.

Some information (often entire sections) in this user guide will only concern digitizers running a spe-

cific firmware type. Such information will be clearly marked and is an exception to the otherwise general

rule that the information herein always applies. For more information on how to manage the digitizer’s

firmware, see Section 12.1.

1.3.1 Standard Data Acquisition Firmware (FWDAQ)

The FWDAQ firmware is the standard firmware available by default on all ADQ3 series digitizers.

1.3.2 Advanced Time-Domain Firmware (FWATD)

The FWATD firmware enables the use of the ATD signal processing module, which allows sample-by-

sample accumulation of records. Section 5.6 provides details specific for this firmware.

1.3.3 Pulse Detection Firmware (FWPD)

The FWPD firmware enabled the use of the PD signal processingmodule, which allows real-time analysis

of unipolar pulses. Section 5.7 provides details specific for this firmware.

ADQ3 Series Digitizers — User Guide spdevices.com Page 10 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

1.4 The First Acquisition

To quickly get up and running with the digitizer, follow the steps outlined below:

1. Install the SDK for the host computer’s platform by following the instructions in Section 15.1.

2. With the host computer powered off, install the digitizer and connect the power cable. When the

system is powered on, the STAT LED should be lit with a constant green color (see Section 13.1).

� Important

Some host computer motherboards may require that x8x8 support is enabled in BIOS to correctly

detect ADQ35-PCIe. Refer to Appendix B for more information.

3. Locate the software example data_readout and follow the instructions in the README to compile.

See Section 15.2 for details on how to locate this software example. Do not make any changes

to the example code for the first acquisition. This example follows the flow documented in Sec-

tion 10.5.3.

4. Run the example application and verify that data is acquired.

ADQ3 Series Digitizers — User Guide spdevices.com Page 11 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

1.5 Definitions and Abbreviations

Table 1 lists the definitions and abbreviations used in this document.

Table 1: Definitions and abbreviations used in this document.

Item Description

ADC Analog-to-digital converter

AFE Analog front-end

API Application programming interface

ARR Accumulation result record (only FWATD firmware)

DC Direct current

DMA Direct memory access

FFC Flexible flat cable

FFI Foreign function interface

FIR Finite impulse response

FWATD Firmware featuring hardware accelerated accumulation of

records

FWDAQ Standard data acquisition firmware

FWPD Firmware featuring real-time analysis of unipolar pulses

GPIO General purpose input/output

GSPS Gigasamples per second

FIR Finite Impulse Response

Horizontal offset The offset (in samples) between the trigger event and the first

sample in the record.

I/O Input/output

LED Light-emitting diode

LSB Least significant bit

MiB Mebibyte, i.e. 1024 · 1024 bytes.
MSB Most significant bit

MSPS Megasamples per second

PCIe Peripheral component interconnect express

PDF Portable document format

Physical interface The device-to-host interface, e.g. PCIe.

RAM Random access memory

Record A dataset, usually a continuous slice of ADC samples.

SDK Software development kit. Includes the function library, header

files, supporting software tools, examples and documentation.

SSD Solid-state drive

Trigger event The event which triggers a record.

Infinite acquisition A never-ending, or for practical purposes “infinite” acquisition.

An acquisition can be infinite both in terms of the number of

records to acquire, or in terms of the length of a record.

ADQ3 Series Digitizers — User Guide spdevices.com Page 12 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

2 Analog Front-End

The input signal enters the digitizer hardware through one of the input connectors, passing through

the analog front-end (AFE) before finally reaching the analog-to-digital converter (ADC). Most of the

properties of theAFE are static and cannot be changed by the user during operation. For details regarding

properties such as bandwidth, refer to the product datasheet [1] [2] [3] [4].

The naming convention for the analog input channels is to use letters: channel A, channel B and so

on. From a programming perspective, the API uses integers starting from zero to index the available

analog channels. Some digitizers support several channel configurations on the same hardware (e.g.

ADQ32-1CH and ADQ32-2CH). This affects the number of channels and their base sampling rate. Table 2

lists the mapping between the digitizer’s physical AFE channels and the index used by the API for all

channel configurations.

� Note

The channel configuration is controlled via the digitizer’s firmware. Refer to Section 12.1.1 for more

information.

� Note

Accessing the alternate input routing is done by modifying the ADQInputRoutingParameters. This is
considered an advanced feature and can be safely ignored unless required by the use case. Ana-

log performance metrics are not guaranteed to be maintained when using the alternate input routing

configurations. Refer to Section 15.4 for more information.

2.1 Input Range

The input range determines which voltage range will map to the full scale range of the digitized samples,

see (1) in Section 3 for a conversion formula. The input range is fixed on all ADQ3 series digitizers

and cannot be modified. The current input range of the digitizer can be read programmatically from the

channel parameter input_range in ADQAnalogFrontendParameters.

2.2 Variable DC Offset

The DC offset is a property of the AFE that may be modified by the user. By default, the value is set to

zero, but may be changed to any voltage within the input range of the digitizer to inject a constant DC

level into the signal path. This effectively shifts the baseline in the acquired data. Modify the channel

parameter dc_offset to set the desired DC offset.

ADQ3 Series Digitizers — User Guide spdevices.com Page 13 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Table 2: Mapping for the channel configurations of ADQ3 series digitizers.

AFE channel label Default API channel index Alternate input routing

ADQ30-1CH

A 0 N/A

ADQ32-2CH, ADQ33-2CH

A 0 1

B 1 0

ADQ32-1CH

A 0 Unused

B Unused 0

ADQ35-2CH

A 0 1

B 1 0

ADQ35-1CH

A 0 Unused

B Unused 0

ADQ36-4CH

A 0 1

B 1 0

C 2 3

D 3 2

ADQ36-2CH

A Unused 0

B 0 Unused

C Unused 1

D 1 Unused

3 ADC

The signal from the analog front-end is converted to digital values via the ADC, at a sampling rate deter-

mined by the clock system configuration (see Section 4).

ADQ3 Series Digitizers — User Guide spdevices.com Page 14 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

From AFE

Sampling clock

Although the digitization is performed by an ADC with 12-bit resolution, the firmware of the digitizer

extends the values to 16-bit signed integers. The 12-bit ADC data is aligned to the most significant bit in

the extension to 16 bits (MSB aligned).

� Important

Even though the ADC data width may be lower than that of the extended data width, signal processing

modules in the data path will utilize the full bit range for calculations. Therefore, ignoring the least

significant bits in the output can result in a loss of accuracy.

The lower bits should not be truncated in an attempt to match the ADC bit resolution. Signal processing

modules will utilize the full bit range and ignoring the least significant bits can result in a loss of accuracy.

Some specific firmware types may modify this data alignment further (such as the FWATD firmware, see

Section 5.6.2). Regardless of firmware type, the alignment can be read through the code_normalization
constant parameter, which will have the value 216 for the standard firmware. To convert a digitized sample

to a voltage, calculate

xmillivolts =
xcodes

code_normalization
· input_range− dc_offset (1)

where xcodes is a sample output by the digitizer and xmillivolts is the corresponding value in millivolts. The

conversion is affected by the digitizer’s input range and DC offset, whose values can be read program-

matically via the channel-specific analog front-end parameters input_range and dc_offset. The value
of dc_offset defaults to zero, but can be manually changed by the user (see Section 2.2).

Values that cannot be represented in the available range will be saturated to either the minimum or

the maximum representable value (whichever is closest) and the overrange bit (ADQ_RECORD_STATUS_
OVERRANGE) will be set in the header field record_status.

� Important

The conversion expression in (1) is affected by whether or not the compression mechanism is enabled.

For more information, see Section 10.8 and in particular Section 10.8.1.

� Example

ADQ32 has an input range of 500 millivolts peak-to-peak (mVpp). A DC offset of −100 mV has been

applied via the AFE. If a digitized sample has a value of 25000 codes, the corresponding voltage at

the input is
25000

216
· 500− (−100) ≈ 290 mV .

ADQ3 Series Digitizers — User Guide spdevices.com Page 15 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

4 Clock System

The analog-to-digital conversion relies on a sampling clock to decide when to sample the input signal.

The sampling clock can be generated in several ways, depending on the use case and the require-

ments. The clocking architecture consists of two parts: the high speed sampling clock generation, and

the reference clock.

� Important

Reconfiguring the clock system parameters will reset parts of the data path and temporarily disrupt

the clock, and should be considered part of the device initialization. See Section 15.4.

4.1 Sampling Clock Generation

The digitizer requires a high speed sampling clock to set the rate at which the ADC digitizes the in-

put signal. By default, this clock is created by taking a reference clock (Section 4.2) and multiplying

its reference_frequency up to the sampling_frequency using a phase-locked loop (PLL). The digi-

tizer has a limited range of sampling frequencies at which this can be done, as specified in the product

datasheet [1] [2] [3] [4].

If full control over the sampling frequency is needed, it is possible to disable the digitizer’s internal

clock generation and provide the full sampling clock via the CLK port directly. This is accomplished by

setting the clock_generator to ADQ_CLOCK_GENERATOR_EXTERNAL_CLOCK and specifying the sampling

frequency via the sampling_frequency parameter. This value may or may not be equal to the frequency
of the input clock signal, depending on the firmware:

• ADQ30, ADQ33

– The sampling_frequency should be set to the same frequency as the input clock signal, and

only a single frequency of 1.0 GHz is supported.

• ADQ32

– 2CH: The sampling_frequency should be set to the same frequency as the input clock signal,

with a maximum value of 2.5 GHz.

– 1CH: The sampling_frequency should be set to twice the frequency of the input clock signal,

with a maximum value of 5.0 GHz.

• ADQ35

– External clock is not supported.

• ADQ36

– 4CH: The sampling_frequency should be set to the same frequency as the input clock signal,

with a maximum value of 2.5 GHz.

– 2CH: The sampling_frequency should be set to twice the frequency of the input clock signal,

with a maximum value of 5.0 GHz.

ADQ3 Series Digitizers — User Guide spdevices.com Page 16 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

4.2 Reference Clock

The reference clock acts a low frequency reference point and is primarily used as amethod to synchronize

multiple instruments to a common time base. By default, the digitizer uses its own internal 10 MHz

reference clock as the reference_source. Alternatively, the digitizer can lock onto an external reference
clock provided through either

• the CLK port, by setting the reference_source to ADQ_REFERENCE_CLOCK_SOURCE_PORT_CLK; or

• the PXIe backplane, by setting the reference_source to ADQ_REFERENCE_CLOCK_SOURCE_PXIE_
10M.

The PXIe backplane reference clock used by the digitizer is created through combining the standard-

defined 100 MHz reference clock (PXIe_CLK100) with the PXIe_SYNC100 signal. This process yields a

low jitter 10 MHz clock signal. It is not possible to use the standard-defined 10 MHz reference clock

(PXI_CLK10).

� Note

The PXIe backplane reference clock is only available for digitizers in the PXIe form factor.

It is also possible to output the digitizer’s reference clock to other instruments via the CLK port. See

Section 8 for details.

When providing an external reference clock, the digitizer can optionally process the signal before it

is passed on to the sampling clock generation stage:

Low jitter mode low_jitter_mode_enabled

When the low jitter mode is enabled, an extra PLL stage is added to the reference clock path,

prior to the sampling clock generator, which locks an internal 10 MHz oscillator to the reference

clock, and then uses that oscillator as the reference for the sampling clock generation. This can

potentially clean excess clock jitter from the reference, with the added constraint that the reference

must be an exact multiple of 10 MHz.

Delay adjustment delay_adjustment_enabled

Enabling delay adjustment connects a delay line to the reference clock path with a programmable

delay_adjustment value, which allows precise tuning of the phase of the reference clock. This
can be useful when building multi-digitizer systems with synchronization requirements. For ex-

ample, the daisy chain trigger mechanism (Section 7.4) can utilize this adjustment to great effect.

Refer to the product datasheet for exact specifications on delay adjustment range [1] [2] [3] [4].

ADQ3 Series Digitizers — User Guide spdevices.com Page 17 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5 Signal Processing

This section describes the signal processing modules available in the digitizer firmware. The purpose of

these modules is to manipulate the continuous ADC data stream to achieve some end goal. Examples

include

• vertical adjustment, in the form of digital gain and offset compensation (Section 5.1),

• sample skipping to reduce the effective data rate (Section 5.2),

• baseline stabilization (Section 5.3); and

• programmable FIR filtering (Section 5.4).

f(x)nxn

yn

Figure 2: A typical signal processing module creates a new stream of data by applying some fixed

operation to its input data stream.

5.1 Digital Gain and Offset

Digital gain and offset is a processing step that is always active and precedes all other signal processing.

The module enables adjustment of the digitized samples of each channel with a gain value and an

offset value as

yn =

(
xn ·

gain
ADQ_UNITY_GAIN

)
+ offset (2)

where yn is the output sample and xn the input sample at time instance n.

� Note

It is possible to specify a gain and/or offset that results in a sample value that cannot be represented
in the available range. In this case, the value will be saturated to either the minimum or the maximum

representable value (depending on the type of overflow) and the overrange bit (ADQ_RECORD_STATUS_
OVERRANGE) will be set in the header field record_status.

5.2 Sample Skip

Sample skip is a processing step that performs data rate reduction by discarding samples. The ratio

between the output data rate and the input data rate is known as the skip factor. This value is individually

configurable for each channel via the parameter skip_factor. Sample skip can be a useful tool when
there is a need to reduce the data rate to match the throughput of some other system component. For

example, continuously writing data to a disk drive with limited write speed.

ADQ3 Series Digitizers — User Guide spdevices.com Page 18 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Example

AnADQ32 with a sampling rate of 2500 MHz has a skip_factor of 10 applied to channel A. For every
10 samples, one will be kept and 9 will be discarded. The new effective sampling rate is

2500 MHz

10
= 250 MHz.

� Note

The sample skip module does not low-pass filter the input data. High frequency noise will be aliased to

lower frequencies when the samples are discarded. It is possible to use the FIR filter signal processing

module to add some anti-alias filtering, see Section 5.4.

When synchronizing multiple digitizers with sample skip enabled, it may be useful to have the phase of

the sample skipping cycles synchronized across the digitizers so that they all sample at the same time. To

facilitate this, sample skip will synchronize its phase when a timestamp synchronization is performed (see

Section 7.3). The synchronization may be disabled by setting the synchronization_source parameter
to ADQ_FUNCTION_INVALID.

� Note

By default, the skip_factor is set to 1, which effectively disables the sample skip module.

� Important

Sample skip is not available for the FWPD firmware.

5.3 Digital Baseline Stabilization (DBS)

Digital baseline stabilization (DBS) is a digital algorithm that keeps the average DC value of the digitized

input signal at a target level. It is capable of removing baseline drift from effects such as temperature

changes without affecting the rest of the input signal.

DBS is especially useful in applications with pulsed input data, where the objective is often to mea-

sure pulse amplitudes relative to a baseline. By stabilizing the baseline to a preset value, such relative

measurements are made easier.

A prerequisite for using DBS successfully is that the baseline must be present in the sample data

without a superimposed signal often enough to allow continuous tracking. An example of a signal that

is not suitable for use with DBS would be a continuous sine wave, where most samples are far from the

DC level of the signal.

To distinguish between baseline and non-baseline regions of the input signal, the upper_saturation_
threshold and lower_saturation_threshold are used. These are thresholds that are relative to the

baseline. Whenever the signal goes outside these thresholds, e.g. during a pulse, the samples will be

ignored by the baseline tracking. As soon as the signal returns to within the thresholds, the baseline

tracking resumes.

ADQ3 Series Digitizers — User Guide spdevices.com Page 19 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.3.1 Typical Setup Routine

By default, DBS is inactive with enabled set to 0. The recommended procedure is to first set both enabled
and reset to 1 together with the target level, with all other parameters left at their default values. After
the baseline has stabilized, the upper_saturation_threshold and lower_saturation_threshold can
be adjusted to be more narrow, with reset kept at 0 to avoid restarting the tracking.

A common use case in pulsed applications is measurement of unipolar pulses, where the pulses are

always either positive or negative. In these situations, it is beneficial to let the baseline sit at a high offset

for negative pulses (and vice versa for positive pulses) to maximize the dynamic range. To achieve this,

DBS should be used in combination with the variable dc_offset of the analog front-end (see Section 2.2).
Note that it is not enough to only set the DBS target level to a high offset since DBS adjustment is done

in the digital domain. The AFE needs to shift the baseline to the target level as well.

After DBS has been enabled, some status information can be read from the digitizer by calling Get-
Status() with ADQ_STATUS_ID_DBS as the target identifier. The tracking_level shows the current esti-
mate of the input baseline, i.e. prior to the digital baseline adjustment. The tracking_update_counter
shows howmany times DBS has updated its estimate of the input level. If the counter is not incrementing,

DBS may be configured in a way that is not suited for the current input signal, resulting in all of the data

being ignored by the tracking. This can be debugged further using the other entries in ADQDbsStatus-
Channel.

5.3.2 Advanced Usage

The default behavior of DBS is to ignore samples beyond the saturation thresholds while tracking the

baseline. An alternative to this is provided by the upper_saturation_value and lower_saturation_
value. By setting these to nonzero values, the saturated data will still affect the baseline tracking, but by
a controlled amount.

If the typical shape of the input waveform is well-known, there may also be known baseline distur-

bances near the saturated data. An example can be seen in Fig. 3, where the pulse is preceded by a

short ripple, and followed by a longer ripple. If these are included in the baseline tracking, the accuracy

of the tracking might be reduced. The ripples are close enough to the baseline that it is not feasible to

ignore them by narrowing the saturation thresholds further. To deal with this this, the ignore_region_
leading_edge_window and ignore_region_trailing_edge_window have been set to 4 and 8 samples
respectively in Fig. 3. Together they define a region around the saturated data where samples will be

ignored by the baseline tracking.

If the regions of time where the input signal contains only the baseline are well-defined, another op-

tion is to set up a pattern generator (see Section 7.1) and connect it to the tracking_control_source
mechanism. This mechanism enables fine-grained control of the time slots where DBS should track

the input signal. When the pattern generator outputs logic high, tracking is active and when the pat-

tern generator outputs logic low, tracking is suspended. This masking signal will also be affected by

the ignore_region_leading_edge_window and ignore_region_trailing_edge_window. Thus, setting
these window lengths to 0 is recommended to let the pattern generator solely determine the ignore re-

gions.

The rate at which DBS updates its estimate of the input baseline can be controlled using the

tracking_update_period and tracking_update_weight. Decreasing the update period or increasing

ADQ3 Series Digitizers — User Guide spdevices.com Page 20 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Ignore region

LEW TEW

upper_saturation_threshold

level

saturated sample

ignored sample

tracked sample

Figure 3: Example of ignore region leading/trailing edge window usage for DBS.

the update weight can make DBS more reactive to fast changes in the input baseline, with the trade-off

being that the tracking also becomes more sensitive to noise.

5.4 FIR Filter

The finite impulse response (FIR) filter is a processing step which convolves the sample data with a filter

impulse response. The coefficients of the impulse response can be programmed by the user to achieve

different types of frequency characteristics.

The filter in the data path is a linear phase filter, which means that the impulse response is sym-

metric. When programming the filter coefficients, only one side of the impulse response is configured,

and the other side is mirrored automatically. The filter order is limited and can be read via the constant
parameters.

� Example

For a filter with order N, the impulse response has a total length of N + 1 taps. Entry 0 in the

coefficient array corresponds to the outermost tap of the filter response, and entry N/2 corresponds

to the center tap.

The filter coefficients are represented as fixed point values in the digitizer firmware and the specific

format can be read via the constant parameters coefficient_bits and coefficient_fractional_
bits. There are two ways to specify these coefficients, either

• directly as fixed point values, via the coefficient_fixed_point array; or

• as IEEE-754 double-precision floating point values, via the coefficient array.

Which method to use is specified by the format parameter. In the floating point case, the coefficients are
subjected to rounding to convert the values into the firmware’s fixed point representation. The tie-break

ADQ3 Series Digitizers — User Guide spdevices.com Page 21 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

rule used for this rounding can be specified via the rounding_method parameter.

� Note

By default, the center tap of the filter is set to 1 and other taps are set to 0 for a flat frequency charac-

teristic.

5.4.1 Filter Design Example

In general, filter design is outside the scope of this document and must be handled by the user. The

Python package Scipy has several FIR filter design methods such as the remez and firwin algorithms

that are easy to use. A design example for a low-pass filter is provided below.

import matplotlib.pyplot as plt
from scipy import signal
import numpy as np

sample_rate = 2500
filter_order = 16
passband_edge = 500
stopband_edge = 800

coefficient_fractional_bits = 14

taps = signal.remez(
filter_order + 1,
[0, passband_edge, stopband_edge, sample_rate / 2],
[1, 0],
Hz=sample_rate,

)

taps_fixed_point = np.round(taps * 2**coefficient_fractional_bits)

ADQ3 Series Digitizers — User Guide spdevices.com Page 22 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

0 200 400 600 800 1000 1200
Frequency [MHz]

60

50

40

30

20

10

0

G
ai

n
[d

B]

Figure 4: Example low-pass FIR filter frequency characteristic.

0 2 4 6 8 10 12 14 16

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 5: Example low-pass FIR filter impulse response.

ADQ3 Series Digitizers — User Guide spdevices.com Page 23 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.5 PDRX

� Important

Not all firmware support PDRX. See Table 3 for a complete list.

The pulse dynamic range extension (PDRX) is a special operating mode of the digitizer where an analog

signal is split and input to two analog channels with different gain. Each channel is digitized separately,

then digitally combined into a single data stream. The combined data stream has the advantage of a

higher dynamic resolution, but comes at a cost of sacrificing one (otherwise independent) analog channel.

Additionally, this method is only effective for certain types of use cases, e.g. pulse based applications

where the key parameter to extract is the amplitude ratio between pulses.

� Important

PDRX is only effective in certain situations, e.g. in a pulse based application where the key parameter

to extract is the amplitude difference between pulses.

Fig. 6 presents a block diagram of the parts of the digitizer specific to PDRX and should be viewed in the

context of Fig. 1. In Fig. 6, the signal splitter is integrated into the digitizer hardware (see Section 5.5.1)

so only one input connector is available for the two analog channels. One channel is designated as the

high gain channel and the other is designated as the low gain channel. The signal in the low gain channel

is subjected to an attenuation by a factor -G while the signal in the high gain channel is left unchanged.
The two signals pass through their respective analog front-end before being digitized by the ADCs. The

data from each channel remains as two separate streams until the PDRX channel combination module

is reached. If enabled, the first module combines the two data streams into a single stream; otherwise,
the data passes through unaltered. The rules for this combination are described in Section 5.5.2.

-G

Channel
combination

To analog front-end *

High gain channel

Low gain channel

To data acquisition *

Unused when channel
combination is active

From signal processing *

Figure 6: A block diagram showing the signal paths through the PDRX-specific hardware. Since the

splitter is mounted on the digitizer, only one input connector is needed. (*) This figure should be viewed

in the context of Fig. 1, which shows the full block diagram of an ADQ3 series digitizer.

It is important to note that when the PDRX operating mode is active, the combined data stream is

output on the low gain channel. This is because the input range of this channel is the effective input

range of the combined data stream, and of the digitizer as seen from the outside. With this convention,

the calculation to translate the ADC codes into a voltage presented in (1) (Section 3) still holds true,

regardless of whether the PDRX operating mode is active or not.

� Important

When the PDRX operating mode is active, the combined data stream is output on the low gain channel.

ADQ3 Series Digitizers — User Guide spdevices.com Page 24 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.5.1 Hardware and Firmware License

There are a few prerequisites that must be met before the digitizer can be placed in the PDRX operating

mode:

• the digitizer must be fitted with an asymmetric splitter; and

• the digitizer must have a valid license for PDRX.

Not all ADQ3 series digitizers currently support PDRX (see Table 3) but those that do can be ordered

with an integrated asymmetric splitter. This is specified as the -PDRX option when ordering.

� Note

ADQ3 series digitizers that support PDRX can be ordered with the -PDRX option. This factory-installed
option alters the analog front-end to permanently add an asymmetric splitter.

Table 3: Support for PDRX acrossADQ3 series digitizers. For combinations that support PDRX, the high

gain channel and low gain channel designations are fixed.

Model Firmware Ch. A Ch. B Ch. C Ch. D

ADQ30 1CH Unsupported

ADQ32 2CH High gain Low gain N/A N/A

1CH Unsupported

ADQ33 2CH High gain Low gain N/A N/A

ADQ35 2CH High gain Low gain N/A N/A

1CH Unsupported

ADQ36 4CH Unsupported

2CH Unsupported

In simple terms, PDRX consists of a hardware part for splitting and a firmware part for combining.

Since these actions are independent, the user can choose to construct an external asymmetric split-

ter (the hardware part) to evaluate PDRX on a regular ADQ3 series digitizer. Refer to the product

datasheet [1] [2] [3] [4] for information on the required attenuation. The high gain channel and low

gain channel designations are fixed (see Table 3) and any external asymmetric splitter must take care to

attenuate the correct signal path.

The integrated asymmetric splitter will yield the best results since the reflection path between the

two channels is shorter, thus lowering the probability of strong reflections being misidentified as another

pulse. However, the PDRX specific hardware is permanently configured in this mode, limiting its use for

more general measurement purposes.

Each channel has a PDRX-specific constant parameter set that informs the user of the digitizer’s

current capabilities. For example, the user can query each channel for whether or not PDRX support

is_present. This parameter will only be asserted for the low gain channel, i.e. the channel that receives

the combined data stream—and only when supported by the correct firmware and a valid license. The

associated high_gain_channel is also reported as a numeric index.

ADQ3 Series Digitizers — User Guide spdevices.com Page 25 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.5.2 Channel Combination

The channel combination module is tasked with combining the data from the high gain channel with the

data from the low gain channel to create a single data stream. Fig. 7 presents a functional block diagram.

The goal is to maximize the dynamic range, thus the selection mechanism always chooses samples from

the high gain channel as long as the data is not clipping. The selection is carried out according to the

following rules:

yout =

xhg, xhg ≤ L, polarity = ADQ_POLARITY_POSITIVE

xhg, xhg ≥ L, polarity = ADQ_POLARITY_NEGATIVE

xhg,
∣∣xhg∣∣ ≤ L, polarity = ADQ_POLARITY_INVALID

xlg, otherwise

(3)

where xhg and xlg are the samples from the high gain channel and low gain channel, respectively. The

limit L is set automatically and is not configurable by the user. By specifying a polarity, the combination
process can be directed to only substitute samples from the low gain channel at one edge of the input

range. This is intended for a situation with unipolar pulses where the high chain channel is only expected

to clip in one direction. In such cases, the dynamic range can be increased further by applying a DC

offset (Section 2.2) to shift the baseline to one edge of the input range. If instead symmetric substitution

is desired, use the special value ADQ_POLARITY_INVALID.

Sample selection

gain

Amplitude
scaling

High gain channel

Low gain channel

1

gain

Figure 7: A functional block diagram of the PDRX channel combination process.

Before the channels are combined, the data from the low gain channel is scaled with a gain factor
to compensate for the attenuation in the analog front-end. By default, this value is set to the nominal

value, i.e. the difference in input range between the two channels, but may be adjusted by the user

as needed. The gain is converted to a fixed point fractional number when written to the digitizer and

can therefore differ slightly from the input value. The gain used by the digitizer can be read back using
GetParameters().

The combination takes place in the resulting high resolution domain according to (3), before being

scaled back by the reciprocal gain to match the range of the low gain channel. Thus, the value of the

LSB of the combined channel is equal to the value of the LSB of the low gain channel. The module is

disabled by default and may be activated by setting enabled to 1.
Note that when the module is enabled, data should only be acquired from the low gain channel (see

Fig. 6 and Table 3). The high gain channel will propagate incorrectly scaled data in this state.

ADQ3 Series Digitizers — User Guide spdevices.com Page 26 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.6 ATD

� Important

This section only applies to digitizers running the FWATD firmware.

The ATD signal processing module enables hardware accelerated accumulation of records as well as

filtering of the record data based on a threshold. These features are only present when the digitizer is

running the FWATD firmware, which is not available by default and must be purchased separately. Fig. 8

presents a block diagram of the parts of the digitizer specific to this firmware and should be viewed in

the context of Fig. 1, which gives the general overview.

� Important

Hardware accelerated accumulation of records is only available for digitizers running the FWATD

firmware. This firmware is currently only supported on ADQ30, ADQ32, ADQ33 and ADQ35.

From data acquisition Transfer
buffers

Hardware
accumulator

Digitizer Host computer

On-board
memory

Threshold filter Software
accumulator

Physical
interface

API

Data transfer and readout

Infrastructure specific to FWATD

User application

Figure 8: A block diagram of the signal processing modules unique to the FWATD firmware. This figure

should be viewed in the context of Fig. 1, which presents the general overview.

Accumulator

The accumulator receives consecutive records generated by the data acquisition process (see

Section 9) and accumulates them sample by sample, resulting in a single record containing the

accumulated data. The accumulator resides partly in firmware and partly in software (inside the

API). Refer to Section 5.6.2 for more information.

Threshold filter

The record data can be passed through a threshold filter prior to accumulation. This helps to

avoid accumulating noise, and can effectively increase the dynamic range of the acquisition and

help isolate rare or “weak” regions of interest within a record, e.g. an infrequently occurring pulse.

Refer to Section 5.6.3 for more information.

ADQ3 Series Digitizers — User Guide spdevices.com Page 27 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.6.1 FWATD Firmware and License

In addition to the FWATD firmware, the digitizer must also have a valid license for this firmware. In the

event that a valid license is missing, the digitizer will fail to start and a message will be added to the trace

log. For information on how to program a firmware onto the digitizer, or to switch between the available

firmware images, see Section 12.1. For information on how to transfer a valid FWATD firmware license

to the digitizer, see Section 12.2.

5.6.2 Accumulator

The accumulator is partitioned, meaning that the workload is split between the digitizer and the host

computer. There are two separate 32-bit accumulators working in tandem: one implemented in the

digitizer’s firmware and one implemented in the API as part of the data readout process.

� Important

The record accumulator is partly implemented in the data readout process (in software). Therefore,

using the data transfer interface directly (Section 10.4) is not supported and neither is transferring data

to any other endpoint than the host computer.

The number of accumulations is specified by the parameter nof_accumulations, and determines the

number of consecutive records in time which should be accumulated and presented as a single record—

the accumulation result record (ARR). This definition means that zero is an invalid value and “no accu-

mulation” is specified as the value 1 (default if the FWATD firmware is running).

� Important

Digitizers not running the FWATD firmwaremust keep the parameter nof_accumulations set to zero,
which will be the default value in those cases. The easiest way to fulfill this requirement is to not modify

the parameter at all.

The number of accumulations is passed through a partitioning algorithm to determine how to divide the

workload between the digitizer and the host computer. The algorithm is weighted to perform as many

accumulations as possible in hardware. Since the on-board DRAM is finite in size, shorter records will

enable a higher number of accumulations to be performed in hardware while longer records shifts the

boundary in the other direction.

The accumulator will scale down the data from its original 16-bit width prior to the hardware accu-

mulator. This is reflected in the code_normalization constant parameter which has a lower value for

a digitizer running the FWATD firmware compared to one running the FWDAQ firmware. This scaling is

fixed and cannot be changed by the user.

An arithmetic overflow occurs when the accumulation process results in a value that cannot be rep-

resented as a 32-bit integer. In these situations, the value will be saturated to either the minimum or the

maximum representable value (depending on the type of overflow) and the overrange bit (ADQ_RECORD_
STATUS_OVERRANGE) will be set in the header field record_status.

ADQ3 Series Digitizers — User Guide spdevices.com Page 28 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Note

For a code_normalization value of 2N , records can safely be accumulated 232−N times without any

risk for arithmetic overflow. For higher accumulation values, the risk of arithmetic overflow will depend

on the characteristics of the input signal.

Record Data and Metadata

The result of each completed accumulation is a single record—the accumulation result record (ARR).

This resulting record is output to the user application space through the data readout process (see Sec-

tion 10.5). However, the record’s sample data will be in 32-bit format, with each sample holding the

sum of the corresponding samples in all of the accumulated records. The size of a sample can be read

programmatically from the parameter nof_bits_per_sample, as well as inferred from the value of the

header field data_format. The accumulation result record uses the same header format as records from
the standard data acquisition process (defined by ADQGen4RecordHeader), with some notable behavioral
differences:

• Record metadata such as the timestamp will be taken from the first record that is used in the

accumulation. An exception is the record_number, which increments by one for each consecutive
ARR.

• The firmware_specific field will hold the number of records that were accumulated to create the
accumulation result record.

• The data_format will be set to ADQ_DATA_FORMAT_INT32, indicating that the data consists of 32-bit
signed integers.

• The overrange bit, defined by ADQ_RECORD_STATUS_OVERRANGE, in record_status will be set on an
arithmetic overflow.

Code to Voltage Conversion

With the record accumulator enabled, the expression presented in (1) (Section 3) to convert an ADC

code to voltage must be adjusted to take the number of accumulations into account:

xmillivolts =
xcodes

code_normalization · firmware_specific
· input_range− dc_offset, (4)

where xcodes is a sample output by the digitizer and xmillivolts is the corresponding value in millivolts.

� Important

The firmware_specific field from the record header must be used in (4), rather than the value of

nof_accumulations, since the actual number of accumulations for a given record can be lower than
the desired number in the event of an overflow. See Section 5.6.6 for more information.

� Important

The conversion expression in (4) is affected by whether or not the compression mechanism is enabled.

For more information, see Section 10.8 and in particular Section 10.8.1.

ADQ3 Series Digitizers — User Guide spdevices.com Page 29 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.6.3 Threshold Filter

The threshold filter consists of a programmable linear phase FIR filter and decision logic aimed to single

out weak unipolar pulses from the surrounding noise. A block diagram of the threshold filter is presented

in Fig. 9.

Delay compensation

Baseline

FIR filter Threshold comparison

Data out

Data in

Filter output

Data out

Threshold

Data in

Decision logic

Figure 9: Block diagram of the threshold function.

The decision logic consists of a multiplexer which selects between either the incoming sample data or

a programmable baseline value, on a sample-by-sample basis. The decision logic compares the user-
defined threshold level to the filter output and depending on the polarity, determines if the sample

should be replaced by the baseline value or if it should remain unchanged. By replacing undesired

samples with the constant baseline value, accumulation of noise can be avoided and the dynamic range

in the resulting accumulation is increased.

The threshold filter is disabled by default and can be enabled on a per-channel basis. This action is
only allowed if the FWATD firmware is running. Otherwise, the operation will return an error.

� Important

Digitizers not running the FWATD firmware must keep each threshold filter disabled (enabled set to
zero). The easiest way to fulfill this requirement is not to modify the parameter at all.

� Note

The threshold filter is applied prior to the scaling described in Section 5.6.2. Therefore, the threshold

level should be set relative to the full 16-bit sample code range.

Decision Logic

The decision logic branch contains the programmable linear phase FIR filter (symmetric impulse re-

sponse). The data passed through the filter does not proceed to the accumulator. Instead, the filter is

ADQ3 Series Digitizers — User Guide spdevices.com Page 30 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

used to shape the data that is compared against the threshold value to determine whether the samples

should be substituted with the baseline value. This substitution occurs if the relation in (5) corresponding

to the current polarity is met, y(n) is the FIR filter output.

y(n) < level, if polarity is ADQ_POLARITY_POSITIVE

y(n) > level, if polarity is ADQ_POLARITY_NEGATIVE
(5)

An example of this is shown in Fig. 9, where the filter has been designed to attenuate the rightmost

undesired pulse. While the unfiltered data crossed the threshold level, the filter output does not, and

thus the pulse is filtered out.

� Example

Entry 0 in the coefficient array corresponds to the outermost tap of the filter response, and entry

nof_coefficients− 1 corresponds to the center tap.

The filter has a total of nof_coefficients coefficients, which are represented as fixed point values in the
digitizer firmware and the specific format can be read via the constant parameters coefficient_bits
and coefficient_fractional_bits. There are two ways to specify these coefficients, either

• directly as fixed point values, via the coefficient_fixed_point array; or

• as IEEE-754 double-precision floating point values, via the coefficient array.

Which method to use is specified by the format parameter. In the floating point case, the coefficients are
subjected to rounding to convert the values into the firmware’s fixed point representation. The tie-break

rule used for this rounding can be specified via the rounding_method parameter.

� Note

By default, the center tap of the filter is set to 1 and other taps are set to 0 for a flat frequency charac-

teristic.

5.6.4 Limitations

� Important

The limitations imposed on the data acquisition process listed in this section are specific to the FWATD

firmware and supersede any limitations (or lack thereof) mentioned in Section 9.

The ATD signal processing module requires that all channels of the digitizer generate records syn-

chronously. This means that all channel parameters for the data acquisition process must be identical

across all channels and that no channel can be disabled.

Additionally, the ATD signal processing module must also be able to divide the incoming record data

evenly into segments, which results in an additional constraint on the record_length:

record_length = S · R (6)

where S can be any valid value in the range specified in Table 4, and R is an integer. The calculation of

ADQ3 Series Digitizers — User Guide spdevices.com Page 31 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

segment value S is performed automatically by the API when the record_length is set and will fail if no
valid value for S is found.

Table 4: Granularity and minimum / maximum values for segment length S, which must evenly divide

the record_length when the digitizer is running the FWATD firmware.

Model Firmware Smin Smax Sstep

ADQ30 1CH 256 8192 32

ADQ32 1CH 256 8192 32

2CH 128 4096 16

ADQ33 2CH 128 4096 16

ADQ35 1CH 512 16384 64

2CH 256 8192 32

ADQ36 2CH Unsupported

4CH Unsupported

The high data rate on ADQ35 sets an additional limit on the record_length. If sample skip is not used
(skip_factor = 1) then the record length is limited, see Table 5.

Table 5: Additional FWATD firmware limits of record_length.

Model Firmware skip_factor > 1 skip_factor = 1

ADQ30 1CH No limit No limit

ADQ32 1CH No limit No limit

2CH No limit No limit

ADQ33 2CH No limit No limit

ADQ35 1CH No limit 2093952

2CH No limit 1046976

5.6.5 Accumulation Grid Synchronization

When StartDataAcquisition() is called and the digitizer transitions to the acquisition phase, trigger

events will start to generate records according to the normal rules of the data acquisition process.

Let NA = nof_accumulations and assume that no (additional) trigger events occur during a record,
i.e. that a trigger event is synonymous to a record. The accumulator will collect the first NA records

before emitting a single ARR to the user application space. Record NA + 1 will be the first record in the

next ARR. The grid established by the trigger events of the first record in each ARR is referred to as the

accumulation grid.

For applications with constant trigger rates, the accumulation grid is well-defined. However, for some

applications the trigger source can be unreliable, and generate more than NA events in one burst, and

other times fewer than NA events. To handle these scenarios, the accumulation grid can be resynchro-

nized by the output signal from any of the pattern generators (see Section 7.1), and thus by extension,

ADQ3 Series Digitizers — User Guide spdevices.com Page 32 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

from an external signal. Grid resynchronization is disabled by default, but can enabled by configuring

one of the pattern generators and selecting it as the accumulation_grid_synchronization_source.
It is safe to synchronize the grid at any point during an acquisition, but the action will always cause

a transient behavior in user space. This behavior is well-defined and regulated by the way the system

handles an overflow. Please refer to Section 5.6.6 to understand the possible outcomes.

� Important

It is not possible to set a maximum number of accumulations NA, and expect any number of trig-

ger events < NA to consistently generate an ARR by resynchronizing the accumulation grid. This is

because an ARR may be discarded due to the rules of the overflow mechanism (Section 5.6.6).

Example

Fig. 10 presents a timing diagram demonstrating the accumulation grid synchronization in three different

cases:

• the incoming triggers exactly match the number of accumulations (region 0),

• the incoming triggers fail to reach the number of accumulations (region 1) and

• the incoming triggers exceed the number of accumulations (region 2).

Pattern generator
output signal

Trigger events

Region 0 Region 1 Region 2

TS0

ARR0 ARR1

TS1 TS2 TS3

ARR2

ARR3

Discarded

Discarded

 10 9 15

Accumulation grid resynchronization points

Figure 10: A timing diagram demonstrating the accumulation grid synchronization. There are three

regions, each initiated by a rising edge of the output signal from the selected pattern generator. Respec-

tively, they visualize three cases where the incoming trigger events exactly match, fail to reach or exceed

the number of accumulations NA = 10.

ADQ3 Series Digitizers — User Guide spdevices.com Page 33 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

The record accumulator is configured to carry out 10 accumulations (NA = 10) and the pattern gener-

ator is set up to emit a pulse with a period that covers the worst-case time range for the source to output

a burst of triggers, and the accumulation grid synchronization is enabled.

Region 0

The first region starts at the first rising edge of the pattern generator’s output signal. At this point,

the accumulation grid is resynchronized and the first trigger event that follows marks the start of

the first accumulation result record, ARR0. The timestamp of this record, TS0, will propagate to

the user via the record header. The region contains exactly 10 triggers which all fall inside of the
pattern generator period.

Region 1

The second region starts at the second rising edge of the pattern generator’s output signal. Once

again, the accumulation grid is resynchronized and the first trigger event that follows marks the

start of ARR1. The timestamp is TS1 and taken exactly at the point where the first record in

the region is triggered. However, this time only 9 trigger events fall within the region and thus

the requirement of NA = 10 is not satisfied. The ARR will ultimately be discarded, but the actual

decision to do so is deferred to the start of region 2, where any ongoing (incomplete) accumulation

is abandoned.

Region 2

The third region starts at the third rising edge of the pattern generator’s output signal. The ac-

cumulation grid is resynchronized, causing the ongoing accumulation of ARR1 to be discarded.

The first trigger event that follows marks the start of ARR2 (timestamp TS2). The region contains

15 triggers in total, which means that the first 10 will be used to complete ARR2 and the one fol-

lowing will mark the start of ARR3 (timestamp TS3). Similar to what occurred in region 1, ARR3

will be discarded at the next grid synchronization event, having only received 5 trigger events.

5.6.6 Overflow

� Note

This section deals with overflows caused by a data rate imbalance, not to be confused with an arith-

metic overflow (Section 5.6.2).

The FWATD firmware features a data discarding mechanism to deal with the many different types of

overflow that may occur due to data rate imbalances. The core concept is to discard data in a well-

defined manner such that the overall accumulation grid (see Section 5.6.5) is preserved and corrupted

records are prevented from propagating to the user.

An overflow is caused by a stall of the data transfer interface for an extended period of time. This

may in turn be caused by an imbalance between the transfer bandwidth of the device-to-host interface

and the output data rate of the digitizer.

During an overflow, data collected up until the point of overflow remains intact, while incoming data is

discarded in a well-defined manner. An overflow will manifest itself in two possible ways, depending on

the accumulator settings and how the workload has been partitioned between the hardware and software

ADQ3 Series Digitizers — User Guide spdevices.com Page 34 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

accumulators. Both of these events are discernible to the user by reading the information available in

the ARR header.

1. An ARR will contain fewer number of accumulated records than the defined number of accumula-

tions. This can be detected through the firmware_specific field, which will contain a value lower
than nof_accumulations.

2. One or several ARRs will be missing completely. This can be detected through the record_number
header field, which will increment by a value higher than 1 if an accumulation has been discarded.

What is guaranteed not to happen is the corruption of data, e.g. that some regions in an ARR are the

result of X accumulated record while Y is the number of accumulated records for other regions.

A different type of overflow occurs if the trigger rate is not well-matched to the record length. For

example, if the trigger period is 8 µs and the record length spans 10 µs, the digitizer will still be recording

data for the previous record when a new trigger event occurs. In this case, the trigger event is simply

ignored, causing the effective trigger period to be 16 µs.

5.7 PD

� Important

This section only applies to digitizers running the FWPD firmware.

The PD signal processing module enables hardware accelerated analysis of unipolar pulses, extracting

key attributes: the peak value, its position, the area and the full width at half maximum (FWHM). These

pulse attributes are transferred in a dedicated channel which can be controlled independently from their

associated analog channel (also called source channel throughout this section). Ultimately, the FWPD

firmware can be configured to only transfer the pulse attributes, significantly reducing the data rate to

the endpoint while still analyzing data at the ADC’s sampling rate.

Fig. 11 presents a block diagram of the parts of the digitizer specific to this firmware and should be

viewed in the context of Fig. 1, which gives the general overview.

� Important

Hardware accelerated analysis of unipolar pulses is only available for digitizers running the FWPD

firmware.

Each source channel has a dedicated analysis module that extracts the attributes from each pulse

identified in the channel’s data stream. This identification is controlled by the channel’s signal level event

source (Section 6.4). Thus, specifying correct values for the level and arm_hysteresis is critical for
the analysis process to work as expected. A pulse is defined as the samples

• from (including) the first sample at or after the level crossing event at the leading edge; and

• to (excluding) the first sample after the level crossing event at the trailing edge.

Each analysis module outputs its data on a separate channel dedicated to pulse attribute data. From

the programmer’s perspective, these channels are placed after the source channels in terms of indexing

ADQ3 Series Digitizers — User Guide spdevices.com Page 35 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

From data acquisition Transfer
buffers

Digitizer Endpoint

Pulse
analysis

Physical
interface

API

Data transfer and readout

Infrastructure specific to FWPD

On-board
memory

On-board
memory

Transfer
buffers

Pulse attribute channel

Source channel

User application

Figure 11: A block diagram of the infrastructure unique to the FWPD firmware. This figure should be

viewed in the context of Fig. 1, which presents the general overview.

(see Table 2 Section 2). For example, a digitizer with two source channels A and B at indexes 0 and 1 will

have two additional pulse attribute channels at indexes 2 and 3, for pulse attributes from channelAand B,

respectively. This brings the total number of channels involved in the data transfer and readout processes

(Section 10) to twice the number of analog channels and is one of the main differences between the

FWPD firmware and the standard FWDAQ firmware. This number is available as the constant parameter

nof_transfer_channels.

5.7.1 FWPD Firmware and License

In addition to the FWPD firmware, the digitizer must also have a valid license for this firmware. In the

event that a valid license is missing, the digitizer will fail to start and a message will be added to the trace

log. For information on how to program a firmware onto the digitizer, or to switch between the available

firmware images, see Section 12.1. For information on how to transfer a valid FWPD firmware license

to the digitizer, see Section 12.2.

5.7.2 Pulse Analysis

The pulse analysis is framed by the records generated by the data acquisition process (Section 9),

meaning that only pulses residing within a record from a source channel will be analyzed. A record can

thus be viewed as a detection window. Each source record will generate exactly one attribute record on

the corresponding pulse attribute channel. The latter will contain the analysis result for each pulse in the

source record in chronological order. Since the number of pulses may vary, the pulse attribute record will

have its length determined dynamically, requiring the data transfer process to be configured for records

with dynamic length. Refer to Section 10.5.3 for more information. If the source record did not contain

any pulses, a zero length record (Sections 9.5.1 and 10.5.5) is emitted.

The analysis process assumes unipolar pulse data, i.e. pulses extend in a single direction relative to

ADQ3 Series Digitizers — User Guide spdevices.com Page 36 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

the baseline. The polarity is a configurable parameter that needs to be set to either ADQ_POLARITY_
POSITIVE or ADQ_POLARITY_NEGATIVE according to the use case. The polarity will influence the search
direction for the peak value, as well as the way each sample contributes to the area. Refer to Sec-

tions 5.7.5–5.7.7 for additional details.

The baseline is a configurable value that needs to be set to the expected reference level for the

ADC data. There is no dynamic baseline tracking built into the analysis module. If baseline drift is a

problem, it is recommended to use the digital baseline stabilization module (Section 5.3) to ensure a

stable reference level, and to set the baseline to the same target level.

� Important

The analysis parameters are set for the analog channels, not the attribute channels.

Fig. 12 presents an example of how the pulse analysis operates in general as well as in a few corner

cases. In the figure, the data acquisition process is configured to acquire records with static length

triggered by an external source, e.g. ADQ_EVENT_SOURCE_TRIG. Pulses where both level crossing events
reside within the source record will generate attribute data that is placed in a record emitted on the pulse

attribute channel. Attributes extracted from the pulses in the source record are placed back-to-back in

the attribute record.

A pulse whose leading edge falls outside the record is ignored entirely. However, if a pulse lies

partially within the source record with its trailing edge outside, an invalid analysis result is generated—as

if the pulse was cut short due to reaching the maximum length limit (see Section 5.7.4).

Pulse attribute records will copy their timing information from the corresponding source record. This

way, the position of the peaks on the digitizer’s timing grid can be fully determined. See Section 5.7.5

for more information.

5.7.3 Data Format

The data in a record emitted by one of the pulse attribute channels will consist of several ADQPulse-
Attributes objects. There will be as many objects as there are pulses in the corresponding source

record. The ADQPulseAttributes are placed back-to-back in chronological order in the memory pointed
to by data (see Fig. 12). The timing information in the record header will be copied from the source

record, i.e. the timestamp will point to the trigger event and record_start will indicate its relative dis-
tance to the first sample in the source record. This gives a well-defined frame of reference for the pulse

attribute data and the relative timing information within, such as the peak_position.

� Important

If a record contains pulse attribute data, the header field data_format will be set to ADQ_DATA_FORMAT_
PULSE_ATTRIBUTES.

5.7.4 Limitations

Due to the nature of some of the calculated attributes, there is an upper limit to the length of a pulse that

can be correctly analyzed. Above this maximum length, some attributes become invalid and the cor-

responding values reported in the ADQPulseAttributes object cannot be trusted. Trustworthy attribute
data is signaled by ADQ_PULSE_ATTRIBUTES_STATUS_VALID in the status field, and the absence of this

ADQ3 Series Digitizers — User Guide spdevices.com Page 37 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Analysis

Analysis

T1

T0

Attr. 0 Attr. 1

Attr. 2

Attr. 3

Attr. 4

Attr. 0 Attr. 1 Attr. 2 Attr. 3 Attr. 4
Record 0

Record 0

Source
channel

Analysis

Pulse
attribute
channel

Record 1

Record 1
Attr. 0 Attr. 1

Attr. 0 Attr. 1

Ignored

T0

T1

Record 2

T2

Record 2

Attr. 2

Attr. 2

Invalid

level

T2

Zero length record

Peak positions

Peak positions

Pulse
attribute
channel

Pulse
attribute
channel

level

level

Source
channel

Source
channel

Figure 12: An example of how pulse attributes are extracted depending on the contents of a record.

Pulses that do not reside fully within in the record will either be ignored or generate an invalid analysis

result. A record without any pulses will generate a zero length record.

ADQ3 Series Digitizers — User Guide spdevices.com Page 38 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

flag implies that one or several attributes are invalid. The maximum pulse length varies depending on

on the digitizer model and the current channel configuration, see Table 6.

The highest pulse rate that can be tolerated indefinitely (the maximum sustained rate) also depends

on the digitizer model and the current channel configuration. Rates exceeding this limit can only be

tolerated for short periods (in bursts) before causing an overflow that forces attribute data to be discarded.

This limit stems from the size imbalance between the shortest possible pulse of one sample and the size

of the ADQPulseAttributes object. The highest burst rate is achieved for a sequence of one-sample

pulses every other sample and can be expressed generally as

sampling_frequency / 2.

This rate can be handled correctly for a sequence of 256 consecutive pulses before causing an overflow.

The pulse rate must drop below the maximum sustained rate listed in Table 6 to restore normal operating

conditions. The overflow status can be queried via GetStatus().

� Important

For the specific case of an ADQ35 digitizer running its one-channel firmware, there is an additional

short-term burst limit, where receiving more than 8 pulses within a window of 32 samples will result in

an overflow where the extra pulses are discarded.

Another limitation of the FWPD firmware is the fact that the write bandwidth of the on-board memory

is balanced around supporting acquisitions with 100% duty cycle for either the source channels or the

attribute channels, but not both at the same time. While transferring data from all available channels

is always allowed, in doing so there is a risk of causing an overflow (Section 10.6.1) regardless of the

current fill level of the on-board memory. This is not expected to be a problem in practice, since the point

of the FWPD firmware is ultimately to only transfer attribute data. Transferring both source and attribute

data is intended for debugging and verification.

Table 6: Limitations of the FWPD pulse analysis depending on the digitizer model and its channel config-

uration. A pulse whose length exceeds the limit will not signal ADQ_PULSE_ATTRIBUTES_STATUS_VALID in
the status field. Pulse rates higher than the sustained rate can only be tolerated in short bursts before
causing an overflow.

Model Firmware Maximum length [S] Maximum sustained rate [Hz]

ADQ30 1CH 8192 sampling_frequency / 8
ADQ32 2CH 8192 sampling_frequency / 8

1CH 16384 sampling_frequency / 16
ADQ33 2CH 8192 sampling_frequency / 8
ADQ35 2CH 16384 sampling_frequency / 16

1CH 32768 sampling_frequency / 32
ADQ36 4CH 8192 sampling_frequency / 8

2CH 16384 sampling_frequency / 16

ADQ3 Series Digitizers — User Guide spdevices.com Page 39 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.7.5 Peak Value and Position

The peak is defined as the point at which the pulse reaches its extreme value. This search is directed

by the configured polarity and seeks

• the maximum, if polarity is set to ADQ_POLARITY_POSITIVE; and

• the minimum, if polarity is set to ADQ_POLARITY_NEGATIVE.

For each identified pulse, the analysis module determines

• the absolute value of the peak, measured relative to the baseline; and

• the peak_position, measured relative to the first sample in the source record.

The peak value is calculated as

peak =

 xmax − baseline if polarity = ADQ_POLARITY_POSITIVE

baseline− xmin if polarity = ADQ_POLARITY_NEGATIVE
(7)

where xmax and xmin are the maximum or minimum values within the pulse boundary.

The peak_position is measured in samples relative to the first sample in the source record. While

no ADC data propagates in a pulse attribute record, the timing information of the source record is copied

to its header (see Fig. 12). Thus, the position of the peak on the digitizer’s timing grid can be expressed
as

tpeak = timestamp+ record_start+ peak_position · sampling_period. (8)

Refer to Section 9.3 for general information about the timestamp and record_start header fields.

Fig. 13 presents how the attributes peak and peak_position are calculated for a pulse when the

polarity is set to ADQ_POLARITY_POSITIVE.

� Note

If the same peak value is repeated for several samples, the peak_position will point to the first one.

� Important

The peak value is given as a 16-bit unsigned integer to support the fact that a dc_offset can be

applied to better utilize the available dynamic range. Peaks

• below the baseline, for ADQ_POLARITY_POSITIVE; and

• above the baseline, for ADQ_POLARITY_NEGATIVE

cannot be represented and indicates an incorrectly configured system.

5.7.6 Full Width at Half Maximum (FWHM)

The full width at half maximum (FWHM) is calculated by taking the horizontal difference between the

two points at which the pulse is at half its amplitude. The amplitude is given by the peak value which is
measured relative to the baseline and according to the polarity.

ADQ3 Series Digitizers — User Guide spdevices.com Page 40 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

baseline

level

T

peak_position

 record_start

peak

timestamp
Potential peak samples

Figure 13: A detailed view of how the two attributes peak and peak_position are calculated for a pulse
when the polarity is set to ADQ_POLARITY_POSITIVE. The peak_position is measured relative to the
first sample in the record, whose position relative to the trigger event T is record_start.

Since this calculation requires that the pulse is observed in its entirety to find the peak, its implemen-
tation relies on a memory. This memory has a finite size, which directly translates into a limitation for the

maximum length of a pulse for which the fwhm can be correctly calculated. See Table 6 for details. The
fwhm will be invalid for pulses exceeding this maximum length and the attributes will be marked as such

in the status field.
The fwhm calculation does not interpolate at the intersections to increase the precision of the result.

A threshold is set at half the peak value and the horizontal difference between

• the first sample at or after the threshold at the leading edge; and

• the first sample at or after the threshold at the trailing edge

is calculated to arrive at the fwhm. Thus, the attribute is measured in samples and given as a whole

number of sampling periods. This can also be viewed as counting the number of samples between the

two crossings of the threshold peak / 2. However, only samples above the level are considered, i.e.
the samples within the pulse boundary. For that reason, the level should be set to less than half of the
expected peak value in general.

� Important

The FWHM calculation only considers sampleswithin the pulse boundary. In other words, for a sample

x[n] to contribute to the fwhm value, it must fulfill

• x[n] ≥ peak
2

and x[n] ≥ level for ADQ_POLARITY_POSITIVE; and

• x[n] ≤ peak
2

and x[n] ≤ level for ADQ_POLARITY_NEGATIVE.

ADQ3 Series Digitizers — User Guide spdevices.com Page 41 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Fig. 14 demonstrates how the fwhm attribute is calculated when the polarity is set to ADQ_POLARITY_
POSITIVE.

peak / 2

baseline

fwhm = 3

level

Figure 14: A detailed view of how the attribute fwhm is calculated for a pulse when the polarity is set
to ADQ_POLARITY_POSITIVE.

ADQ3 Series Digitizers — User Guide spdevices.com Page 42 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.7.7 Area

The area of a pulse is calculated from the samples within the pulse boundary with additional contribution

from two adjacent static windows. The length of these windows can be configured independently from

each other via the parameters area_leading_edge_window_length and area_trailing_edge_window_
length. These windows may overlap with the ones extending from other pulses without consequences

to the data flow. However, note that pulses in close proximity may contribute to each other’s area.

Let the first sample in the leading edge window be x[0] and the last sample in the trailing edge window

be x[N − 1]. The area is calculated as

area =

N−1∑
n=0

(x[n]− baseline) if polarity = ADQ_POLARITY_POSITIVE

N−1∑
n=0

(baseline− x[n]) if polarity = ADQ_POLARITY_NEGATIVE

(9)

meaning that it is always positive in the direction determined by the polarity. However, negative values
are still possible for short pulses where the edge windows contain samples below the baseline or if the
baseline is incorrectly configured. Fig. 15 demonstrates how the area of a pulse is calculated when the
polarity is set to ADQ_POLARITY_POSITIVE.

If the length of the pulse exceeds the maximum limit (Table 6), the area calculation is invalid and will
be marked as such in the status field.

baseline

level
 TEW

 LEW

area

Figure 15: A detailed view of how the area is calculated for a pulse when the polarity is set to ADQ_
POLARITY_POSITIVE. The samples contribute to the area relative to the baseline, see (9). In addition

to the samples within the pulse boundary, the leading edge window (LEW) and the trailing edge window

(TEW) determine which samples to include in the calculation.

ADQ3 Series Digitizers — User Guide spdevices.com Page 43 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

5.7.8 Examples

This section introduces two configurations available as software examples specific to the FWPD

firmware. These demonstrate how to combine the features of the digitizer for effective system-level

solutions for pulse based applications. Both configurations focus on pulse analysis, but differ in how the

records frame the ADC data, i.e. how the data acquisition process is configured. An assumption made

in both cases is that the wider system features a well-defined, periodic signal that acts as a scheduler

and indicates when useful pulse data is expected. This signal will be used to define the detection

window.

• The first configuration demonstrates a case where the entire detection window is spanned by a

single record with static length.

• The second configuration demonstrates a case where the detection window is implemented using

the trigger blocking mechanism (Section 9.5) and each pulse generates a record with dynamic

length.

� Note

Both configurations are implemented in the software example fwpd. This example code is available in
both C++ and Python in the release archive. See Section 15.2 for details on how to locate the example

code.

Static Record Length

This case is presented in Fig. 12 (page 38) and relies on the following base configuration for the data

acquisition process:

• The trigger_source for each channel is set to the event source matching the port where the

external scheduler signal is connected to the digitizer, e.g. ADQ_EVENT_SOURCE_TRIG.

• The trigger_edge is set to the correct edge sensitivity for the scheduler signal.

• Dynamic record length is disabled: dynamic_record_length_enabled set to zero (default value).

• The record_length is set to the desired length of the detection window.

• The trigger blocking mechanism is disabled: trigger_blocking_source is set to ADQ_FUNCTION_
INVALID (default value).

ADQ3 Series Digitizers — User Guide spdevices.com Page 44 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

The records generated by the source channel and its associated attribute channel are matched one

for one and the source record coincides exactly with the detection window. As a result, pulses within the

detection window automatically have a common frame of reference in regards to how the peak_position
is measured.

However, one drawback is that transferring data from the source channels will result in the entire

detection window being transferred, since that is how a record is defined. This can potentially result in a

high data rate since a large part of the bandwidth is spent transferring the “silent” parts of the detection

window.

Thus, this method is only superior when only transferring pulse attribute data, as this negates the

drawback by not transferring ADC data at all. Alternatively, the situation can be improved—at the cost

of some configuration complexity—by instead starting from a base configuration implementing zero sup-

pression, as described in the following section.

Dynamic Record Length

This case builds upon the zero suppression implementation discussed in Section 9.1.3. The acquisition

configuration presented in that section results in each pulse being acquired as its own record, except for

bursts, which may extend the record to include more than one pulse, see Fig. 39 (page 98).

� Note

Refer to Section 9.1.3 for an overview of zero suppression for pulse data using FWDAQ.

The example configuration presented in this section utilizes

• the trigger blocking mechanism (Section 9.5) to implement a detection window on top of this ac-

quisition pattern,

• zero length records (Section 9.5.1) to signal the absence of pulses within a detection window; and

• the timestamp synchronization mechanism (Section 7.3) to use the scheduler signal as a reference

point for the timestamp of each record.

The general behavior of this configuration is presented in Fig. 16. Compared to the static length case,

this configuration improves the transfer efficiency for the source channels, at the cost of slightly worse

framing of the attribute data belonging to a single detection window (from the user’s point of view). This

attribute data will now be given over the course of several records and the timestamp_synchronization_
counter will have to be queried to keep track of the grouping. Equation (8) can still be used to accurately
position a peak on the digitizer’s timing grid, but relies on the continuous synchronization of the digitizer’s
time base to the scheduler signal. The base configuration is as follows:

• The trigger_source for each channel is set to its own signal level event source, i.e. ADQ_EVENT_
SOURCE_LEVEL.

• The trigger_edge is set to the edge sensitivity that matches the leading edge of a pulse:

– ADQ_EDGE_RISING for positive pulses; and

– ADQ_EDGE_FALLING for negative pulses.

ADQ3 Series Digitizers — User Guide spdevices.com Page 45 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• Dynamic record length is enabled: dynamic_record_length_enabled set to 1.

– The lengths of the two edgewindows: dynamic_leading_edge_window_length and dynamic_
trailing_edge_window_length are set to appropriate values for the expected pulse shapes
(refer to Section 9.1.1 for details).

– The maximum length of a record: dynamic_record_length_max is set to a sensible value

(refer to Section 9.1.2 for details).

• Zero length records (Section 9.5.1) are enabled with zero_length_records_enabled set to 1. If a
detection window ends without having observed a pulse, a record with no data is emitted to signal

this event.

• The timestamp synchronization mechanism is enabled with

– the source set to the event source matching the port where the external scheduler signal is
connected to the digitizer, e.g. ADQ_EVENT_SOURCE_TRIG,

– the edge set to the correct edge sensitivity for the scheduler signal,

– the mode set to ADQ_SYNCHRONIZATION_MODE_ALL; and

– the arm behavior set to ADQ_ARM_AT_ACQUISITION_START.

• The trigger blocking mechanism is enabled and trigger_blocking_source is set to one of the

pattern generators, e.g. ADQ_FUNCTION_PATTERN_GENERATOR0.

• The pattern generator used as the trigger_blocking_source is configured to output

– logic high until detecting an event of the scheduler signal with the correct edge sensitivity; and

instruction[0].source = ADQ_EVENT_SOURCE_TRIG;
instruction[0].source_edge = ADQ_EDGE_RISING;
instruction[0].op = ADQ_PATTERN_GENERATOR_OPERATION_EVENT;
instruction[0].output_value = 1;
instruction[0].output_value_transition = 0;

– logic low for the duration of a detection window.

instruction[1].op = ADQ_PATTERN_GENERATOR_OPERATION_TIMER;
instruction[1].output_value = 0;
instruction[1].output_value_transition = 1;

Refer to Section 7.1 for general information about the pattern generators.

ADQ3 Series Digitizers — User Guide spdevices.com Page 46 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Detection window

Detection window

T3 2

T2 1T1 1T0 1 Attr. 0

Attr. 0 Attr. 0

Attr. 0

Attr. 1

Attr. 2

R
ec

or
d

0

R
ec

or
d

2

level

T0 T1 T2

R
ec

or
d

1

0

timestamp

Record 0 Record 1

Attr. 0

Record 2

Attr. 0 Attr. 1 Attr. 2
Pulse
attribute
channel

Source
channel

Analysis

Timestamp
synchronization

TRIG

Trigger
blocking
source

Attr. 0

level

T3

R
ec

or
d

3

0

timestamp

Record 3

Attr. 0
Pulse
attribute
channel

Source
channel

Analysis

Timestamp
synchronization

TRIG

Trigger
blocking
source

Ignored

timestamp_synchronization_counter

Peak positions

Trigger event outside of
the detection window

Figure 16: A system scheduler signal is connected to the TRIG port and used to define a detection

window via the trigger blocking mechanism. The digitizer’s time base is synchronized on the same

event to create a common reference point for the timestamp of each record in the detection window.

The timestamp_synchronization_counter reported in the header for each record increments for each
detection window, allowing straightforward grouping of record data in the user application. Apulse whose

trigger event fall outside the detection window is ignored. A pulse which begins inside the window but

ends outside of it is analyzed in its entirety. This differs from the static length case in Fig. 12 (page 38).

ADQ3 Series Digitizers — User Guide spdevices.com Page 47 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

6 Event Sources

Events symbolize the availability of information and may be used by various parts of the digitizer to

accomplish certain tasks. They are generated by event sources and play a central role in defining how the

digitizer acquires data, and how the supporting functions, e.g. timestamp synchronization (Section 7.3),

behave during data acquisition and in general.

Event sources are identified using values from the enumeration ADQEventSource. Not all event

sources in the enumeration are supported by an ADQ3 series digitizer. The available event sources

are described in the following sections.

6.1 Trigger Events

The term trigger event (also: trigger) is reserved to specifically mean the event that triggers an acquisition

of data. For example, the timestamp synchronization mechanism is stimulated by an event source,

not a trigger source. However, the same event source may be selected to generate trigger events for

channel A. In that context, it is a trigger source.

Not every event source may be selected as a trigger source. It is possible for an event source to

exist solely to support a specific function and not relate to the data acquisition process directly. Fig. 17

illustrates this relationship.

Event
sources

Trigger
sources

Figure 17: A trigger event always originates from an event source, but an event source may not always

be used to generate trigger events.

6.2 Software

The software controlled event source allows the user to generate events from the user application. Call

SWTrig() to generate an event. This event source is identified by the value ADQ_EVENT_SOURCE_SOFTWARE
and may be used to generate trigger events.

� Important

This event source only generates events with the rising edge polarity. Any consumer of these events

must use the edge sensitivity ADQ_EDGE_RISING.

ADQ3 Series Digitizers — User Guide spdevices.com Page 48 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Important

There is no guarantee on the timing of events generated by the software controlled event source.

Software events issued back-to-back may experience a large variation in their relative timing. This

is in large part due to the scheduling performed by the operating system. The digitizer and the host

computer does not constitute a real-time system.

6.3 Periodic

This event source generates events from the rising and falling edges of a clock signal that is synchronized

to the sampling clock. There are three different methods of configuring the properties of the clock signal,

specifying either:

• the logic high and logic low durations,

• the period; or

• the frequency.

The two latter methods yield a clock signal with approximately 50% duty cycle. This event source may be

used to generate trigger events but is useful in other contexts as well. For example, the pulse generators

(Section 7.2) can be stimulated by these events to synthesize a periodic digital signal that may be output

on supported ports. The periodic event source is identified by the value ADQ_EVENT_SOURCE_PERIODIC.

� Note

The resolution of the periodic event generator is equal to the digitizer’s sampling_frequency, and
is unaffected by any signal processing steps altering the effective sampling rate, e.g. sample skip

(Section 5.2).

6.3.1 Synchronization

The periodic event generator can be synchronized to another event source. There are three different

synchronization modes, configured with the parameter synchronization_mode:

Disable ADQ_SYNCHRONIZATION_MODE_DISABLE

Synchronization is disabled. In this mode, the periodic event generator is always running and

started asynchronously as soon as it receives its initial configuration. This is the default mode of

operation.

First ADQ_SYNCHRONIZATION_MODE_FIRST

In this mode, the periodic event generator is started when the first event matching the selected

synchronization_edge sensitivity is detected from the target synchronization_source. Subse-
quent synchronization events are ignored.

All ADQ_SYNCHRONIZATION_MODE_ALL

In this mode, the periodic event generator is synchronized on all events matching the

synchronization_edge sensitivity from the target synchronization_source, regardless of

where in the output sequence this occurs.

ADQ3 Series Digitizers — User Guide spdevices.com Page 49 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

The synchronizationmechanism can either be armed immediately when the parameters are written (ADQ_
ARM_IMMEDIATELY), or when the data acquisition is started (ADQ_ARM_AT_ACQUISITION_START). Note that
in the latter case, there is still a nonzero time difference between the arming of the synchronization

mechanism and the data acquisition process. The arm behavior is configured using the parameter

synchronization_arm.

� Example

The periodic event generator’s synchronization mechanism can be used to create an event stream

known to be synchronous to some external event.

Consider a case where data should be acquired synchronously from multiple digitizers with a 1 kHz

trigger frequency and where only a global start signal (a single pulse) is available. Each digitizer can

be set up to trigger on its own periodic event source, which in turn is synchronized to the global start

signal, which can be input on the TRIG port. With the following configuration for each digitizer’s periodic

event generator:

frequency = 1000.0

synchronization_source = ADQ_EVENT_SOURCE_TRIG

synchronization_edge = ADQ_EDGE_RISING

synchronization_mode = ADQ_SYNCHRONIZATION_MODE_FIRST

synchronization_arm = ADQ_ARM_AT_ACQUISITION_START,

and a trigger_source set to ADQ_EVENT_SOURCE_PERIODIC, the event generators will be synchronized
at the first rising edge on the TRIG port following the call to StartDataAcquisition(), resulting in a
synchronized 1 kHz acquisition process.

6.4 Signal Level

A signal level event source analyzes the post-processed data of an input channel, searching for points

where the data crosses a target level.

� Important

The dedicated signal level event sources for each channel can only be used by the data acquisition

process to trigger records. The signal level event source matrix (Section 6.5) may additionally also be

used by the pulse generators (Section 7.2).

� Important

The signal level event source is only active during data acquisition, see Section 9.4.

The detection mechanism has two parameters (configurable per channel):

• the signal level (level); and

• the arm hysteresis (arm_hysteresis).

ADQ3 Series Digitizers — User Guide spdevices.com Page 50 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

The purpose of the arming mechanism is to implement safeguard against incorrectly identifying events

for slow-moving noisy signals. The arm hysteresis is a positive value indicating when the event detection

should be armed and ready to identify either a rising or falling event. The hysteresis value is converted

into an arm level for the respective event type as

Arm level (rising) = level − arm_hysteresis

Arm level (falling) = level + arm_hysteresis
(10)

where the mechanism is armed to detect an event of each type at the first sample

• at or below the arm level for rising events; and

• at or above the arm level for falling events.

Fig. 18 presents a zoomed view of the rising edge of a slow-moving noisy signal. In this example, the

arm hysteresis has been set too low, causing the event source to incorrectly output a second rising event

as well as a falling event a short while later. Increasing the arm hysteresis will eliminate the false events.

Thus, the arm hysteresis should be set to a value slightly higher than the signal’s noise level.

� Important

The arm hysteresis should be set to a value slightly higher than the signal’s noise level.

Target level

Arm level (rising)

Arm hysteresis

✗

✗

Rising event detection is rearmed
too early

False rising event

Arm level (falling)

✗

Falling event detection is armed too early

False falling event

True rising event

Figure 18: A demonstration of how a low arm hysteresis may cause false signal level events when

analyzing a slow-moving noisy signal.

The signal level event source analyzing data from the first channel is identified by the value ADQ_
EVENT_SOURCE_LEVEL_CHANNEL0, the second by ADQ_EVENT_SOURCE_LEVEL_CHANNEL1 and so on. The

ADQ3 Series Digitizers — User Guide spdevices.com Page 51 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

special value ADQ_EVENT_SOURCE_LEVEL exists as an alias for the channel itself and is only applicable in
contexts where its use is not ambiguous. For example, the channel-specific data acquisition parameter

trigger_source may be set to this value.

6.5 Signal Level Matrix

The signal level event source matrix allows the user to create a new event stream based on the event

streams from any of the channel’s dedicated signal level event sources. For each channel the user can
specify whether or not the channel’s signal level event stream is enabled and its edge sensitivity. Once
configured, each event fulfilling the specification will be routed to the output. In some sense, the matrix

computes logic OR between the input events.

This event source is identified by the value ADQ_EVENT_SOURCE_LEVEL_MATRIX and can be used by

the acquisition process to trigger records, as well as by the pulse generators (Section 7.2) to construct

output signals.

� Important

The signal level event matrix can only be used as a trigger source and as input to the pulse generators

(Section 7.2). It is important to note that there is a fixed nonzero latency between detecting the signal

level event and changing the output from a pulse generator. While this latency is constant for repeated

runs of the same digitizer configuration, the value may change if the digitizer firmware is updated.

� Important

The signal level event source matrix is not to be confused with the matrix event source (Section 6.10).

The two event sources allow a different set of inputs and cannot be combined.

ADQ3 Series Digitizers — User Guide spdevices.com Page 52 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Example

Consider a digitizer with two channels. Configure the signal level event source matrix to combine

the rising edge events and falling edge events from both channels. Trigger channel A on rising edge

events and channel B on falling edge events from the combined event stream:

struct ADQParameters adq;

/* Configure the signal level threshold for each channel. */
adq.event_source.level.channel[0].level = 500;
adq.event_source.level.channel[1].level = -2000;

/* Enable the event streams from channel A and channel B. Combine both types of
edge events from both channels. */

adq.event_source.level_matrix.channel[0].enabled = 1;
adq.event_source.level_matrix.channel[0].edge = ADQ_EDGE_BOTH;
adq.event_source.level_matrix.channel[1].enabled = 1;
adq.event_source.level_matrix.channel[1].edge = ADQ_EDGE_BOTH;

/* Configure channel A to only trigger on rising edge events from the matrix. */
adq.acquisition.channel[0].trigger_source = ADQ_EVENT_SOURCE_LEVEL_MATRIX;
adq.acquisition.channel[0].trigger_edge = ADQ_EDGE_RISING;

/* Configure channel B to only trigger on falling edge events from the matrix. */
adq.acquisition.channel[1].trigger_source = ADQ_EVENT_SOURCE_LEVEL_MATRIX;
adq.acquisition.channel[1].trigger_edge = ADQ_EDGE_FALLING;

6.6 Port TRIG

The event source connected to the TRIG port performs edge detection on the input signal with a config-

urable voltage threshold. The timing precision for these events is higher for the TRIG port compared to

other ports, e.g. SYNC.Additionally, it is the only port with timing precision higher than the base sampling

rate of the digitizer, reaching subsample accuracy. For exact details on the specifications of the TRIG

port when used as an event source, refer to the product datasheet [1] [2] [3] [4]. Refer to Section 8 for

additional details on the TRIG port from a hardware perspective.

� Example

For an ADQ32-PCIe digitizer running at 2500 MSPS, the TRIG port is sampled at 20 GSPS, i.e. eight

times higher than the base sampling rate.

The TRIG event source is identified by the value ADQ_EVENT_SOURCE_TRIG and may be used as a trigger
source.

ADQ3 Series Digitizers — User Guide spdevices.com Page 53 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

6.7 Port SYNC

The event source connected to the SYNC port performs edge detection on the input signal with a con-

figurable voltage threshold. The timing precision of the SYNC port is lower than the TRIG port. For

exact details on the specifications of the SYNC port when used as an event source, refer to the product

datasheet [1] [2] [3] [4]. Refer to Section 8 for additional details on the SYNC port from a hardware

perspective.

� Example

For an ADQ32-PCIe digitizer running at 2500 MSPS, the SYNC port is sampled at 312.5 MSPS, i.e.

eight times lower than the base sampling rate.

The SYNC event source is identified by the value ADQ_EVENT_SOURCE_SYNC and may be used as a trigger
source.

6.8 Port GPIOx

An ADQ3 series digitizer may feature one or several GPIO ports: GPIOA, GPIOB and so on. Certain

pins in these ports may have an event source associated with them. Refer to Section 8.1 for information

about the capabilities of the ports of a specific digitizer model.

The event source connected to a pin in a GPIO port performs edge detection on the input signal with

a fixed voltage threshold. For exact details on the specifications of the event sources for GPIO signals,

refer to the product datasheet [1] [2] [3] [4]. Refer to Section 8 for additional details on the GPIO ports

from a hardware perspective.

� Example

For an ADQ32-PCIe digitizer running at 2500 MSPS, pin 0 in the GPIOA port is sampled at

312.5 MSPS, i.e. eight times lower than the base sampling rate.

The event source tied to a GPIO pin is identified by its corresponding value in the enumeration ADQEvent-
Source. For example, ADQ_EVENT_SOURCE_GPIOA0 represents the event source associated with pin 0 in
the GPIOA port.

6.9 Port PXIe

Digitizers featuring the PXIe interface have three additional event sources, one for each of the PXIe

signals: STARB, TRIG0 and TRIG1. Refer to Section 8.1 for information about the ports of a specific

digitizer model.

The event sources connected to pins in the PXIe port performs edge detection on its respective input

signal with a fixed voltage threshold.

� Example

For an ADQ36-PXIe digitizer running at 2500 MSPS, the PXIe STARB signal is sampled at

312.5 MSPS, i.e. eight times lower than the base sampling rate.

The event sources associated with the PXIe pins are identified by the values

ADQ3 Series Digitizers — User Guide spdevices.com Page 54 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• ADQ_EVENT_SOURCE_PXIE_STARB,

• ADQ_EVENT_SOURCE_PXIE_TRIG0; and

• ADQ_EVENT_SOURCE_PXIE_TRIG1.

Any of these event sources may be used as a trigger source.

6.10 Matrix

The matrix event source combines the event streams from a set of target event sources into a new event

stream, essentially constructed as logic OR of the inputs—if any of the input sources produces an event,

so will the matrix event source.

Each matrix input specifies a target event source and an edge sensitivity. The special value ADQ_
EVENT_SOURCE_INVALID is used to specify a disabled input.

The order in which input sources are specified is important because it determines their relative priority,

used in resolving conflicts when two input events occur in close proximity to one another. The source

connected to input 0 has the highest priority followed by input 1 and so on. There are ADQ_MAX_NOF_
MATRIX_INPUTS inputs, however only a subset of the digitizer’s event sources can target the matrix.

These are the event sources associated with external ports and the software controlled event source.

The matrix event source is identified by the value ADQ_EVENT_SOURCE_MATRIX and may be used to

trigger the acquisition process and by any of the functions listed in Section 7.

� Important

The matrix event source is not to be confused with the signal level event source matrix (Section 6.5).

The two event sources allow a different set of inputs and cannot be combined.

ADQ3 Series Digitizers — User Guide spdevices.com Page 55 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Example

Configure the matrix event source to combine both the rising edge events and the falling edge events

from the two ports TRIG and SYNC. Trigger channel A on rising edge events and channel B on falling

edge events from the combined event stream.

struct ADQParameters adq;

/* Configure matrix input 0 (highest priority) to target both rising and falling
edge events from the TRIG port. */

adq.event_source.matrix.input[0].source = ADQ_EVENT_SOURCE_TRIG;
adq.event_source.matrix.input[0].edge = ADQ_EDGE_BOTH;

/* Configure matrix input 1 (second highest priority) to target both rising and
falling edge events from the SYNC port. */

adq.event_source.matrix.input[1].source = ADQ_EVENT_SOURCE_SYNC;
adq.event_source.matrix.input[1].edge = ADQ_EDGE_BOTH;

/* Other inputs are left disabled by keeping the default values. */

/* Configure channel A to only trigger on rising edge events from the matrix. */
adq.acquisition.channel[0].trigger_source = ADQ_EVENT_SOURCE_MATRIX;
adq.acquisition.channel[0].trigger_edge = ADQ_EDGE_RISING;

/* Configure channel B to only trigger on falling edge events from the matrix. */
adq.acquisition.channel[1].trigger_source = ADQ_EVENT_SOURCE_MATRIX;
adq.acquisition.channel[1].trigger_edge = ADQ_EDGE_FALLING;

6.11 Reference Clock Synchronization

Event sources associated with external ports and the software controlled event source can be synchro-

nized to the digitizer’s reference clock (see Section 4.2). When an event is synchronized to the reference

clock, it is delayed until the next rising edge of the reference clock occurs. If several port events are de-

tected during a reference clock period, the last event will be selected for synchronization and the earlier

events ignored. This is illustrated in Fig. 19. The reference_clock_synchronization_edge parameter
can be used to select which event type that should be synchronized. Valid values are:

• ADQ_EDGE_RISING, to only synchronize rising edge events (discarding falling edge events),

• ADQ_EDGE_FALLING, to only synchronize falling edge events (discarding rising edge events); and

• ADQ_EDGE_BOTH, to synchronize both types of events.

Normally, the edge should be set to the same value as the edge of the intended event source consumer.

For example, if a synchronized event source is used to trigger the acquisition process, the specified

trigger_edge should match the reference_clock_synchronization_edge. Synchronizing both types

ADQ3 Series Digitizers — User Guide spdevices.com Page 56 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

of events and only consuming one type is also valid. Additionally, synchronizing events to the reference

clock is only permitted when the following conditions hold true:

• ADQ30

– 1CH: sampling_frequency ≥ 16 · reference_frequency

• ADQ32, ADQ33

– 2CH: sampling_frequency ≥ 16 · reference_frequency

– 1CH: sampling_frequency ≥ 32 · reference_frequency

• ADQ35

– 2CH: sampling_frequency ≥ 32 · reference_frequency

– 1CH: sampling_frequency ≥ 64 · reference_frequency

• ADQ36

– 4CH: sampling_frequency ≥ 16 · reference_frequency

– 2CH: sampling_frequency ≥ 32 · reference_frequency

� Important

The reference clock synchronization requires that the sampling frequency is either 16, 32 or 64 times

the reference frequency depending on firmware.

Reference clock

Unsynchronized signal

Synchronized event

a c

b d

Figure 19: A timing diagram illustrating reference clock synchronization of an external signal. A rising

edge event is captured and output for the first period, and a falling edge event is captured and output for

the second. The edge specification is set to ADQ_EDGE_BOTH.

� Important

The reference clock synchronization mechanism also features its own independent event source. It

is identified by the value ADQ_EVENT_SOURCE_REFERENCE_CLOCK and only outputs rising edge events,
marking the rising edge of the reference clock signal. This event source is always enabled.

ADQ3 Series Digitizers — User Guide spdevices.com Page 57 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7 Functions

A function module takes zero or more input signals and creates zero or more output signals. A function

module with zero output signals implies that the effect is indirect, e.g. the timestamp synchronization

module (Section 7.3) does not output any signal, instead it sets the digitizer’s timestamp to a specific

value. This definition is general by design to allow the feature set of the digitizer to grow organically over

time, and to do so in a way that puts minimal strain on the mental model.

All function modules are opt-in and disabled by default. Configuring a function module is never re-

quired to acquire data. However, utilizing one or several may be required to achieve a desired system

behavior, e.g. synchronizing the timestamp, blocking triggers or outputting a digital pulse pattern.

?
Pulse

Generator

Event source

Figure 20: The definition of a function is general by design. They are opt-in and exist to meet specific

use case requirements. One example is the pulse generator (Section 7.2) which is stimulated by an

event source and outputs a digital pulse pattern. This signal can be output on any of the supported ports

(Section 8).

7.1 Pattern Generator

The pattern generator module is capable of generating an arbitrary 1-bit pattern using counters and

stimuli from the event source system (Section 6). The output signal may in turn be consumed by other

parts of the digitizer to achieve a desired system behavior. A main function of the pattern generator is to

use its output signal as stimuli for the trigger blocking mechanism (Section 9.5).

The pattern generator is configured with a set of instructions. For each instruction, the pattern gener-

ator can either output a logic high value (1) or a logic low value (0). The next instruction is loaded once

the current instruction’s transition condition is fulfilled: either a set time has passed, or a set number

of events have been observed. The state of this transition may also be reset by an event. The num-

ber of instructions is limited to 16. While the pattern generator is active, the following loop is executed

continuously:

1. Load the first instruction and output its logic value.

2. Wait until the transition condition is fulfilled. If the reset source is active and a reset event is de-

tected, reload the current instruction and continue waiting.

3. If this is the last instruction, go to step 1. Otherwise, load the next instruction and go to step 2.

The pattern generator will automatically reset to step 1 when data acquisition is started with StartData-
Acquisition(). This is done to facilitate the use of the pattern generator for trigger blocking (Section 9.5),
which requires the pattern to be synchronized with the data acquisition process.

The pattern generator is enabled when nof_instructions is greater than zero. To disable the gen-
erator, set nof_instructions to zero. The digitizer contains several pattern generators which can be

ADQ3 Series Digitizers — User Guide spdevices.com Page 58 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

used independently. The number of pattern generators available can be read from the parameter nof_
pattern_generators. The parameters that constitute an instruction are described in the following sec-
tions.

7.1.1 Operation

The instruction’s operation is specified with the parameter op. Each instruction can specify one of the

following operations:

Event ADQ_PATTERN_GENERATOR_OPERATION_EVENT

An event instruction is active while waiting for a set number of events to be observed from the

target source. The number of events to wait for is specified by the instruction parameter count.

Timer ADQ_PATTERN_GENERATOR_OPERATION_TIMER

A timer instruction is active for a set amount of time. The duration is specified by the instruction

parameter count.

� Note

An instruction can be made to never transition to the next by setting the operation to ADQ_PATTERN_
GENERATOR_OPERATION_EVENT and the source to ADQ_EVENT_SOURCE_INVALID.

7.1.2 Count

The instruction parameter count determines the condition required to load the next instruction. The

parameter serves different purposes depending on the operation. It either specifies

• the number of events to observe (event instruction); or

• a set amount of time measured in sampling periods (timer instruction).

For a timer instruction, the counter can be scaled using the count_prescaling parameter. The total

count can be expressed as the product

count_prescaling · count. (11)

Normally, the prescaling is used when the range of the count parameter is insufficient.

� Example

OnADQ32, assuming a sampling rate of 2500 MSPS, the maximum count for a timer instruction corre-

sponds to approximately 13 seconds with the prescaler set to 1 but can be extended up to 58 minutes

with the prescaler set to its maximum value.

7.1.3 Source

The instruction parameters source and source_edge specify the event source and the edge sensitivity
to observe for an event instruction. For timer instructions these parameters are ignored. Each instruction

ADQ3 Series Digitizers — User Guide spdevices.com Page 59 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

source is independent of the other instructions but the total number of unique sources may not be larger

than five per pattern generator.

� Note

The maximum number of unique sources for each pattern generator is five.

7.1.4 Reset Source

The instruction parameters reset_source and reset_source_edge specify the event source and the

edge sensitivity to observe for the reset condition. Each event observed from the reset source will reload

the current instruction, effectively resetting the count and the transition state. For example, this can

be used to always open a window with a fixed length on an event, regardless of whether a window is

already open or not. See the corresponding example in Section 7.1.6. The reset source can be disabled

by setting reset_source to ADQ_EVENT_SOURCE_INVALID. This is the default value.

7.1.5 Output Value

The logic value output by the pattern generator may change with each instruction. It is configured via

the two parameters output_value and output_value_transition. The former defines the logic value
to output during the whole instruction with the exception of the last cycle, where the logic value to output

is defined by output_value_transition. This is illustrated in Fig. 21.

clk

source (event)

instruction 0 1 2

output

Figure 21: Timing diagram for two event instructions observing the same event source. Note the different

transition values. Instruction 0 has output_value = 0, output_value_transition = 0 and instruction 1

has output_value = 1, output_value_transition = 0.

� Important

While the count for a timer operation is specified in sampling periods, the granularity is not 1. This is
because the pattern generator runs with a clock (clk in Fig. 21) that is slower than the sampling clock.
Another consequence of this is that the position of events from event sources with resolution beyond

this base clock will be truncated to the lower time resolution in the output signal.

ADQ3 Series Digitizers — User Guide spdevices.com Page 60 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7.1.6 Examples

This section provides a few examples of how to configure the pattern generator using the trigger blocking

mechanism (Section 9.5) to provide a practical context. The source code snippets are written in the

C programming language but the general concepts hold true regardless. The variable parameters is an
ADQPatternGeneratorParameters struct and is assumed to be have been initialized with with a call to

InitializeParameters(). Additionally, the examples assume that the pattern generator is selected as
the trigger blocking source for a channel by setting the acquisition parameter trigger_blocking_source
to target the configured pattern generator.

Example: once

Configure the pattern generator to output logic high (block all triggers) until a rising edge event

is detected on the GPIOA port and then output logic low (accept all subsequent triggers). This

behavior requires two instructions where the first is constructed as

parameters.nof_instructions = 2;
/* First instruction */
parameters.instruction[0].op = ADQ_PATTERN_GENERATOR_OPERATION_EVENT;
parameters.instruction[0].count = 1;
parameters.instruction[0].output_value = 1;
parameters.instruction[0].output_value_transition = 1;
parameters.instruction[0].source = ADQ_EVENT_SOURCE_GPIOA0;
parameters.instruction[0].source_edge = ADQ_EDGE_RISING;

The second instruction is set up to never transition since the use case requires that the output

stays at a logic low level for the duration of the acquisition. This is accomplished by setting the

source of an event instruction to ADQ_EVENT_SOURCE_INVALID.

/* Second instruction */
parameters.instruction[1].op = ADQ_PATTERN_GENERATOR_OPERATION_EVENT;
parameters.instruction[1].count = 1;
parameters.instruction[1].output_value = 0;
parameters.instruction[1].output_value_transition = 0;
/* Set ADQ_EVENT_SOURCE_INVALID to ensure that the instruction never

transitions */
parameters.instruction[1].source = ADQ_EVENT_SOURCE_INVALID;

ADQ3 Series Digitizers — User Guide spdevices.com Page 61 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Example: trigger count

Configure the pattern generator to output logic high (block all triggers) until a rising edge event

has been observed on the SYNC port. Following this, output logic low (accept all triggers) until

100 rising edge events on the TRIG port have been observed. If a rising edge SYNC event occurs

during the second phase, reset the counter and extend the acceptance window by an additional

100 rising TRIG events. This behavior requires two instructions where the first is constructed as

parameters.nof_instructions = 2;
/* First instruction */
parameters.instruction[0].op = ADQ_PATTERN_GENERATOR_OPERATION_EVENT;
parameters.instruction[0].count = 1;
parameters.instruction[0].output_value = 1;
parameters.instruction[0].output_value_transition = 1;
parameters.instruction[0].source = ADQ_EVENT_SOURCE_SYNC;
parameters.instruction[0].source_edge = ADQ_EDGE_RISING;

and the second instruction as

/* Second instruction */
parameters.instruction[1].op = ADQ_PATTERN_GENERATOR_OPERATION_EVENT;
parameters.instruction[1].count = 100;
parameters.instruction[1].output_value = 0;
parameters.instruction[1].output_value_transition = 0;
parameters.instruction[1].source = ADQ_EVENT_SOURCE_TRIG;
parameters.instruction[1].source_edge = ADQ_EDGE_RISING;
parameters.instruction[1].reset_source = ADQ_EVENT_SOURCE_SYNC;
parameters.instruction[1].reset_source_edge = ADQ_EDGE_RISING;

ADQ3 Series Digitizers — User Guide spdevices.com Page 62 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Example: window

Configure the pattern generator to output logic high (block all triggers) until a rising edge event

has been observed on the TRIG port. Following this, output logic low (accept all triggers) during a

window of 100000 sampling periods. Any trigger event occurring as the window is opened will be

accepted due to the logic low transition value of the first instruction. This behavior requires two

instructions where the first is constructed as

parameters.nof_instructions = 2;
/* First instruction */
parameters.instruction[0].op = ADQ_PATTERN_GENERATOR_OPERATION_EVENT;
parameters.instruction[0].count = 1;
parameters.instruction[0].output_value = 1;
parameters.instruction[0].output_value_transition = 0;
parameters.instruction[0].source = ADQ_EVENT_SOURCE_TRIG;
parameters.instruction[0].source_edge = ADQ_EDGE_RISING;
parameters.instruction[0].reset_source = ADQ_EVENT_SOURCE_INVALID;

The second instruction will allow rising TRIG events to restart the window, effectively extending

the logic low output duration by another 100000 sampling periods.

/* Second instruction */
parameters.instruction[1].op = ADQ_PATTERN_GENERATOR_OPERATION_TIMER;
parameters.instruction[1].count = 100000;
parameters.instruction[1].output_value = 0;
parameters.instruction[1].output_value_transition = 0;
parameters.instruction[1].reset_source = ADQ_EVENT_SOURCE_TRIG;
parameters.instruction[1].reset_source_edge = ADQ_EDGE_RISING;

ADQ3 Series Digitizers — User Guide spdevices.com Page 63 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7.2 Pulse Generator

The pulse generator generates digital pulses with a fixed length on every event from the selected input

event source. For the duration of the pulse, a logic high value is output, otherwise a logic low value is

output. When an event from the selected event source matches the specified edge sensitivity, a pulse
with a duration of length sampling periods is generated. Fig. 22 presents a conceptual block diagram.

Pulse
Generator

Event source

Figure 22: A conceptual block diagram of a pulse generator and its surrounding infrastructure.

The pulse generator signal can be output on one or several of the supported ports (Section 8). The

output signal can be inverted on a port-basis via the port parameter invert_output.
The pulse generator may also be configured to follow the event source by setting the length param-

eter to −1. This effectively sets the output to logic high between the rising and falling events of the event
source. There may be more than one pulse generator available to the user. These can be individually

configured. The number of pulse generators available can be read programmatically from the parameter

nof_pulse_generators.

� Important

While the pulse length is specified in sampling periods, the granularity is not 1. This is because

the pulse generator runs with a clock that is slower than the sampling clock. As a consequence, the

position of events from event sources with resolution beyond this base clock will be truncated to the

lower time resolution in the output signal.

� Example

Consider anADQ32 running at the base sampling frequency of 5 GHz (length granularity 32). Config-
ure the periodic event source with a period of 800 samples, yielding an event frequency of 6.25 MHz.
In this configuration, it is not possible to output a signal with exactly 50% duty cycle since the falling

edge event occurs after 400 samples, which cannot be set as the pulse length since it is not divisible
by 32. The length may be set to 384 samples (48% duty cycle) or to 416 samples (52% duty cycle).

However, the period between rising edges will always be exactly 800 samples.

� Important

If the source is set to ADQ_EVENT_SOURCE_LEVEL_MATRIX (Section 6.5), there will be a fixed nonzero

latency between detecting the signal level event and changing the pulse generator’s output. While this

latency is constant for repeated runs of the same digitizer configuration, the value may change if the

digitizer firmware is updated.

ADQ3 Series Digitizers — User Guide spdevices.com Page 64 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7.3 Timestamp Synchronization

The timestamp synchronization module is used to set the digitizer’s internal timestamp counter (see

Section 9.3) to a predefined value on an event. This can be used to establish a common time base

for multiple digitizers by relating the time base to some external event. The value which the timestamp

counter will be set to is configured with the seed parameter. There are three different modes, configured
with the mode parameter:

Disable ADQ_SYNCHRONIZATION_MODE_DISABLE

Timestamp synchronization is disabled. The timestamp counter is set to zero at power on.

First ADQ_SYNCHRONIZATION_MODE_FIRST

Synchronize the timestamp on the first event. The timestamp counter is set to the seed value on
the first event.

All ADQ_SYNCHRONIZATION_MODE_ALL

Synchronize the timestamp on every event. The timestamp counter is set to the seed value for

every event. A timing diagram for this mode is presented in Fig. 23.

The event is specified with the parameters source and edge. When an event is detected, the timestamp

counter will be reset immediately after the event. This means that if a record is triggered on the same

event, the record timestamp will have the value of the timestamp counter before the reset, not the seed
value. The behavior is illustrated in the following example.

� Example

Let the timestamp synchronization and the data acquisition trigger on the same periodic source with

period Tp, and let the timestamp of the first record be T0. The timestamp of a record n, Tn, is given by

one of the following equations, depending on the timestamp synchronization mode:

Tn,disable = T0 + n · Tp ∀n (12)

Tn,first =

T0 if n = 0

seed+ n · Tp if n > 0
(13)

Tn,all =

T0 if n = 0

seed+ Tp if n > 0
(14)

The timestamp synchronization can either be armed immediately when the parameters are written, or

when the data acquisition is started. Note that in the latter case, there is still a nonzero time difference be-

tween the arming of the timestamp synchronization and the data acquisition process. The arm behavior

is configured using the arm parameter.
The number of times the timestamp has been synchronized is available in the record header field

timestamp_synchronization_counter. The value can also be read separately via a call to GetStatus().

ADQ3 Series Digitizers — User Guide spdevices.com Page 65 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

clk

source (event)

timestamp T0 T1 T2 T3 T1 T2 T3 T4 T5 T6 T7 T1 T2

sync. counter 0 1 2

Figure 23: Timing diagram of the timestamp synchronization mechanism synchronizing on every event.

ADQ3 Series Digitizers — User Guide spdevices.com Page 66 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7.4 Daisy Chain

One problem facing a system consisting of more than one digitizer, where synchronicity is critically im-

portant, is how to distribute the trigger signal. Consider such a system where the main goal is to use a

single trigger source to trigger the data acquisition process for all the channels of all the digitizers at the

same time. If the system only contains a few digitizers, one potentially successful strategy is to connect

the signal to each digitizer by first going through a splitter, followed by cables of equal length. However,

this approach does not scale well with the number of digitizers in the system. In addition to the large

amount of cables required, the trigger signal is eventually attenuated beyond the sensitivity of the analog

inputs, prompting the use of supporting electronics such as active fanout buffers.

To address this problem, ADQ3 series digitizers supports daisy chain triggering. This is a system

level solution that combines several features of the digitizer to acquire data across multiple digitizers

simultaneously with a single trigger event. The name comes from the digitizers being connected to each

other in series in a way that allows an electrical signal—the daisy chain signal—to propagate between

them. Simultaneous data acquisition is achieved by using a common reference clock and propagating the

daisy chain signal through all digitizers according to a fixed scheme. Optionally, the timing performance

can be further improved by utilizing the clock system’s capability of individually adjusting each digitizer’s

reference clock, see Section 4.2 for additional details.

At its core, the daisy chain trigger mechanism offers a solution to large scale trigger distribution for

synchronous acquisition, converting a badly scaling problem in the analog domain (fanning out the trigger

signal) into a more manageable problem in the digital domain.

7.4.1 Structure

The daisy chain itself is constructed by connecting an output-capable port of one digitizer to an input-

capable port of another, repeating this pattern until the target digitizers have all been connected as links

in a chain. Refer to Section 8 for more information about ports. Technically, each digitizer is allowed to

propagate the daisy chain signal to several others as long as the signal level is within acceptable limits1

of the input ports. In other words, a tree-like topology is supported and the default one-to-one (series)

connection pattern can be considered as a special case.

Within the daisy chain, a digitizer will always assume one of the following distinct types:

• the primary type (position 0); or

• the secondary type (position 1, 2, ...).

� Important

The implementation only supports a single primary digitizer, i.e. the daisy chain must be unidirectional;

a ring topology is not supported.

The primary digitizer is placed first in the daisy chain and is responsible for capturing the trigger event.

In the most straightforward configuration, the primary digitizer (position 0) will synchronize the trigger

event to the reference clock and output a pulse on its designated output port. This signal will propagate

to the first secondary digitizer (position 1), which triggers its own internal data acquisition process on the

1Refer to the product datasheet [1] [2] [3] [4]for additional details.

ADQ3 Series Digitizers — User Guide spdevices.com Page 67 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

next rising edge of the reference clock before propagating the signal onwards, again synchronized to

the reference clock. This continues until the last digitizer has received the daisy chain signal. Fig. 25

shows an example of such a configuration using several ADQ32-PCIe digitizers spread across two host

computers. The figure is explained further in Section 7.4.4. A timing diagram of the data acquisition

process with this propagation scheme is presented in Fig. 24.

Since each digitizer triggers at an increasingly later point in time, the horizontal_offset of each

digitizer must be set up with increasingly larger values to correctly capture data around the trigger point

of the primary digitizer. Since negative horizontal offset is implemented using memory, there is an upper

limit to the length (measured in number of positions) of the daisy chain.

� Note

With each advancement of a digitizer’s position in the daisy chain comes a requirement of a certain

minimum negative horizontal_offset. This shifts the parameter’s lower bound upwards, restricting
the range of horizontal adjustment available to the user.

The position of a digitizer within the chain is incremented each time the daisy chain signal is resynchro-

nized to the reference clock. This is typically carried out when the signal passes through each digitizer,

but is technically under the user’s control. This can be leveraged to create topologies that greatly re-

duce the effective length of the chain, and by extension, the memory requirements. Compare the two

examples in Sections 7.4.4 and 7.4.5, whose topologies are presented in Figs. 26 and 28.

� Example

Consider a daisy chain set up such that:

• Digitizer A is the primary digitizer and outputs the daisy chain signal to Digitizer B, Digitizer C

and Digitizer D.

• Digitizer D outputs the daisy chain signal to Digitizer E and Digitizer F.

• Digitizer F outputs the daisy chain signal to Digitizer G.

Assuming each device resynchronizes the chain to the reference clock by setting resynchronization_
enabled to 1, the position of the devices are as follows:

Trigger source

Digitizer A Position 0

Digitizer B Position 1

Digitizer C Position 1

Digitizer D Position 1

Digitizer E Position 2

Digitizer G Position 3

Digitizer F Position 2

ADQ3 Series Digitizers — User Guide spdevices.com Page 68 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Required horizontal offset

Required horizontal offset

 Record 0

Primary trigger

Position 0

Position 1

Daisy chain output

Daisy chain output

Daisy chain output

Position 2

 Record 0

 Record 0

Reference clock

Primary

Secondary

Secondary

Secondary trigger

Secondary trigger

Tref

Figure 24: A high-level timing diagram of the data acquisition process for the daisy chain trigger mech-

anism in its most straightforward configuration. Refer to Section 7.4.1 for details.

7.4.2 Phase One: Synchronizing the Timing Grid

A fundamental requirement of the daisy chain mechanism is for all digitizers to share a common reference

clock. While this makes it so the digitizers run at precisely the same rate, initially their timing grids are

not synchronized, i.e. they do not agree on where t = 0. Thus, a prerequisite to entering the acquisition

phase will be to synchronize the timing grids of all the digitizers in the system. This is accomplished by

using

• the software controlled event source (Section 6.2),

• the seeding functionality of the timestamp synchronization module (Section 7.3); and

• the daisy chain and its precise propagation of a 1-bit digital signal.

The existing daisy chain will be used to propagate the synchronization signal, which will be triggered from

the user application via the software controlled event source. The timestamp synchronization module

for each digitizer will be seeded with a value corresponding to its position within the daisy chain. As

ADQ3 Series Digitizers — User Guide spdevices.com Page 69 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

the signal propagates through the chain, the digitizers’ timing grids sequentially restart from the seeded

values which effectively anticipate the propagation delay, ultimately synchronizing the timing grids to

agree on t = 0. Refer to steps 1–4 in Section 7.4.7 for details on how to perform this task.

When all the digitizers in the system agree on t = 0, relating events in time from any of them is a trivial

operation. The timestamp of an acquired record will hold a value of absolute time and these values are

precisely the same across the entire system.

� Important

The synchronization of the timing grid must be performed each time the clock system is reconfigured

(or initialized after power-up) for any of the digitizers in the system. However, as long as the clock

system configuration remains fixed, this operation does not need to be repeated.

7.4.3 Phase Two: Continuous Operation

Once phase one (Section 7.4.2) has successfully been completed, the system is ready for continuous

operation of the daisy chain. Apart from selecting the appropriate trigger source for the primary digitizer

and switching the arming strategy, the configuration steps remain the same as phase one. Refer to

steps 5–6 in Section 7.4.7 for configuration details.

The synchronized timing grids established in phase one trivializes the task of aligning records from any

digitizer in the system. Since the semantics of each record’s timestamp and record_start is preserved,
the values can be used as normal to relate records to each other in time. Refer to Section 9.3 for additional

details on the timing information of a record.

The pseudo code below demonstrates how to extract the samples of the secondary digitizer, s_data,
that corresponds to the samples of the primary digitizer, p_data. The time_unit of the digitizers are

assumed to be equal.

The timestamp of the first sample of the primary device
p_ts = primary_record.header.timestamp + primary_record.header.record_start

The timestamp of the first sample of the secondary device
s_ts = secondary_record.header.timestamp + secondary_record.header.record_start

Get the index of the first sample after the trigger event for the secondary device
index = ceil((s_ts - p_ts)/secondary_record.header.sampling_period))

p_data = primary_record.data
s_data = secondary_record.data[index : index + record_length]

ADQ3 Series Digitizers — User Guide spdevices.com Page 70 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7.4.4 Example: ADQ32-PCIe

Consider a system of two host computers, each with four ADQ32-PCIe digitizers. Fig. 25 shows one

example of how the system can be connected to utilize the daisy chain trigger mechanism, with the

resulting topology presented in Fig. 26.

In line with the prerequisites, a common reference clock is distributed to each digitizer’s CLK port

(Section 8.5) through cables of equal length. The trigger signal is connected to the TRIG port of D0,

which assumes the role of primary digitizer. The daisy chain signal propagates sequentially through the

remaining (secondary) digitizers, entering on the TRIG port and exiting on the SYNC port. Each digitizer

synchronizes the outbound signal to the reference clock, thus advancing the position of the next device

by one. Refer to Fig. 24 for a timing diagram of how the daisy chain signal would propagate for the first

three digitizers in this example.

Reference clock

Trigger source

To
 n

ex
t h

os
t c

om
pu

te
r

Host computer 1

S
ec

on
da

ry
P

os
iti

on
 3

TRIG SYNCCLK BA

D3

D2

GPIO

TRIG SYNCCLK BA

D1

GPIO

TRIG SYNCCLK BA

D0

GPIO

CLK BAGPIO TRIG SYNC

TRIG SYNCCLK BA

D7

D6

GPIO

TRIG SYNCCLK BA

D5

GPIO

TRIG SYNCCLK BA

D4

GPIO

CLK BAGPIO TRIG SYNC

Host computer 2

S
ec

on
da

ry
P

os
iti

on
 2

S
ec

on
da

ry
P

os
iti

on
 1

P
rim

ar
y

P
os

iti
on

 0

S
ec

on
da

ry
P

os
iti

on
 7

S
ec

on
da

ry
P

os
iti

on
 6

S
ec

on
da

ry
P

os
iti

on
 5

S
ec

on
da

ry
P

os
iti

on
 4

The reference clock must be distributed through cables of equal length.

Figure 25: A block diagram of a system using the daisy chain mechanism to trigger eight ADQ32-PCIe

digitizers (16 channels in total) across two PCIe-capable host computers. The trigger signal is connected

to the TRIG port of D0, which assumes the role of primary digitizer. The daisy chain signal propagates

sequentially through the remaining (secondary) digitizers, entering on the TRIG port and exiting on the

SYNC port. Each digitizer synchronizes the outbound signal to the reference clock, thus advancing the

position of the next device by one. It is crucial that the reference clock is distributed to each host computer

through cables of equal length.

D1
Position 1

D0
Position 0

D2
Position 2

D4
Position 4

D6
Position 6

D3
Position 3

D5
Position 5

D7
Position 7

Figure 26: A diagram showing the resulting daisy chain topology from the configuration in Fig. 25.

ADQ3 Series Digitizers — User Guide spdevices.com Page 71 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7.4.5 Example: ADQ36-PXIe

One system layout that benefits significantly from the daisy chain trigger mechanism is multiple PXIe-

chassis filled with ADQ36-PXIe. In such a system, both the reference clock and the daisy chain signal

may be distributed through the PXIe backplane (within a chassis). An example configuration is presented

in Fig. 27, with the resulting topology presented in Fig. 28.

Following the established prerequisites, a common reference clock is distributed to both chassis

through cables of equal length. The trigger signal is connected to the TRIG port of D0, which assumes

the role of primary digitizer. However, in this example, the trigger bus in the PXIe backplane is utilized

to its full potential, neatly managing the propagation of the trigger signal between digitizers in a chassis

without the need for cables between ports in the front panels. The daisy chain signal is passed from

one chassis to the next via the SYNC ports of the outermost digitizers. In the second chassis, the

receiving digitizer synchronizes the signal to the reference clock before the propagation through the

PXIe backplane is repeated, this time moving from right to left.

Due to the topology afforded by propagating the daisy chain signal through the PXIe backplane

(Fig. 28), multiple digitizers are located at the same position within the chain, which greatly reduces

the memory requirements since the maximum horizontal_offset scales with the number of positions.
Consider the timing diagram in Fig. 24:

• Digitizers D1–D7 will experience the signal propagation according to position 1, since they are

effectively connected in parallel.

• Digitizer D8 will experience the signal propagation according to position 2.

• Digitizers D9–D15 will experience the signal propagation according to position 3, since they are

effectively connected in parallel.

ADQ3 Series Digitizers — User Guide spdevices.com Page 72 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Trigger bus (PXIe backplane)

TRIG

SYNC

D

C

B

A

REF IN

Reference clock

Trigger bus (PXIe backplane)

REF IN

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

TRIG

SYNC

D

C

B

A

Chassis 1

Chassis 2

Primary
Position 0

Secondary
Position 1

Secondary
Position 1

Trigger source

Secondary
Position 1

Secondary
Position 1

Secondary
Position 1

Secondary
Position 1

Secondary
Position 1

Secondary
Position 3

Secondary
Position 3

Secondary
Position 3

Secondary
Position 2

Secondary
Position 3

Secondary
Position 3

Secondary
Position 3

Secondary
Position 3

D0 D1 D2 D3 D4 D5 D6 D7

D8D9D10D11D12D13D14D15

To
 n

ex
t c

ha
ss

is

The reference clock must
be distributed through
cables of equal length.

Figure 27: A block diagram of a system using the daisy chain mechanism to trigger 16 ADQ36-PXIe

(64 channels in total) across two PXIe chassis. The trigger signal is input on the TRIG port of digitizer

D0 and propagates through the chassis backplane before traveling between the chassis through the

respective SYNC ports of digitizers D7 and D8. Digitizer D8 resynchronizes the signal to the reference

clock before passing it through the chassis backplane, this time from right to left. It is crucial that the

reference clock is distributed to each chassis through cables of equal length.

D1 D2 D3 D4 D5 D6

D7

D9 D10 D11 D12 D13 D14D8

D15

Position 1

D0
Position 0

Position 2

Position 3

Figure 28: A diagram showing the resulting daisy chain topology from the configuration in Fig. 27.

ADQ3 Series Digitizers — User Guide spdevices.com Page 73 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7.4.6 Limitations

The daisy chain mechanism has the following limitations:

• The rearm time is the shortest possible time between two trigger events on the primary digitizer

for which the daisy chain functions correctly. This can also be expressed as a maximum trigger

frequency, fmax , and is calculated as

fmax =
reference_frequency

Q
, (15)

where Q is an integer calculated as

Q =

⌈
skip_factor · record_length · reference_frequency

sampling_frequency
+ 1

⌉
. (16)

� Example

Consider an ADQ32-PCIe running its two-channel firmware at the base sampling rate with an

external 10 MHz reference clock. The record length is set to 1024 samples and the sample skip

factor to 1 (no samples are discarded). Using (15) and (16), the maximum trigger rate fmax can

be determined as

Q =

⌈
1 · 1024 · 10 · 106

2.5 · 109
+ 1

⌉
= d5.096e = 6

fmax =
10 · 106

6
≈ 1.67 MHz

The rearm time is

Trearm =
1

fmax
=

6

10 · 106
= 600 ns

• The clock system configuration must fulfill the following criteria to guarantee correct operation of

the daisy chain trigger mechanism:

Tpropagation + T(sampling_frequency) < Tref , (17)

where

– Tpropagation is a constant that specifies the time it takes to propagate the daisy chain signal

between two neighboring digitizers. This value is system dependent since it includes propa-

gation through cables and analog signal buffers, but normally lies in the nanosecond range.

– T(sampling_frequency) is a function of the nominal sampling frequency that also depends

on the digitizer and its firmware. See Table 7.

– Tref is the reference clock period, i.e. 1/reference_frequency.

ADQ3 Series Digitizers — User Guide spdevices.com Page 74 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Table 7: T(sampling_frequency) is a function of the nominal sampling frequency that varies with the

digitizer model and its firmware.

Model Firmware T(sampling_frequency)

ADQ30 1CH 15 · 8 / sampling_frequency
ADQ32 2CH 15 · 8 / sampling_frequency

1CH 15 · 16 / sampling_frequency
ADQ33 2CH 15 · 8 / sampling_frequency
ADQ35 2CH 15 · 16 / sampling_frequency

1CH 15 · 32 / sampling_frequency
ADQ36 4CH 15 · 8 / sampling_frequency

2CH 15 · 16 / sampling_frequency

� Example

Consider anADQ36-PXIe running its two-channel firmware (base sampling rate 5 GHz). Assume

a propagation delay of ≈ 5 ns and a desire to use an external reference clock input on the CLK

port. Using (17) and Table 7, the minimum reference clock period is determined as

5 · 10−9 +
15 · 16
5 · 109

< Tref ⇒ Tref ,min = 5 · 10−9 +
15 · 16
5 · 109

= 5.3 ns,

and thus the maximum reference clock frequency is

fref ,max =
1

Tref ,min
≈ 18.9 MHz.

Note that the clock system places additional constraints on the reference clock frequency so not

every value in this range will be accepted.

� Example

Consider an ADQ32-PCIe running its one-channel firmware (base sampling rate 5 GHz) with its

internal 10 MHz reference clock. Assume a propagation delay of ≈ 5 ns. Using (17) and Table 7

gives

5 · 10−9 +
15 · 16

fs
<

1

10 · 106
⇒ fs >

15 · 16(
1

10·106 − 5 · 10−9
) ,

and thus the minimum sampling frequency is

fs,min =
15 · 16(

1
10·106 − 5 · 10−9

) ≈ 2.53 GHz.

Note that the clock system places additional constraints on the sampling frequency so not every

value in this range will be accepted.

ADQ3 Series Digitizers — User Guide spdevices.com Page 75 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• To keep the sampling points for all digitizers in the system well-aligned, the following expression

must hold true:
sampling_frequency
reference_frequency

∈ N, (18)

i.e. the reference frequency must evenly divide the sampling frequency in order for these two clock

signals to be in phase with each other.

� Important

– The sampling_frequency must be the same for all digitizers in the system.

– The reference_frequency must be the same for all digitizers in the system.

If the sample skip module (Section 5.2) is enabled and thus performs additional data rate reduction,

the expression in (18) is extended to

sampling_frequency
reference_frequency · skip_factor

∈ N, (19)

where the skip_factor is allowed to vary between digitizers in the system. This requirement is not
a consequence of the daisy chain mechanism itself, but rather a reality of synchronizing a system

with more than one digitizer running with different effective sampling rates.

� Note

Technically, there is nothing preventing the user from specifying a skip_factor that violates

the condition in (19) but is otherwise accepted by the digitizer. The daisy chain mechanism

will continue to work correctly in these situations since the timing grids are aligned. However,

the digitizers’ sampling grids will not always align and more importantly, may experience different

phases for each restarted acquisition. Regardless, the expression in (18) must never be violated.

7.4.7 Configuration

While the term daisy chain is primarily used to refer to the concept as a whole, in the context of configuring

the digitizer, it also refers to the digitizer’s dedicated function module. The parameters for this module are

defined by ADQDaisyChainParameters. Since daisy chain trigger mechanism is a system level solution,

just configuring a single function module will not successfully trigger all the digitizers in the chain. The

list below outlines the required configuration steps and will have to be implemented by the user at the

system level.

1. Configure the ports used for input and output of the daisy chain signal, see Section 8.

2. Configure the daisy chain for timestamp synchronization.

• Select the daisy chain source and the edge sensitivity.

– For the primary digitizer, set the source to ADQ_EVENT_SOURCE_SOFTWARE and the edge to
ADQ_EDGE_RISING.

– For secondary digitizers, set the source to the event source associated with the daisy

chain input port and the edge to ADQ_EDGE_RISING.

ADQ3 Series Digitizers — User Guide spdevices.com Page 76 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• For all digitizers, set the position in the daisy chain. This value starts at 0 for the primary

digitizer and increments by one each time the daisy chain signal is resynchronized to the

reference clock.

� Important

Multiple digitizersmay have the same positionwithin the chain, depending on the topology.

• For all digitizers, set the daisy chain arm parameter to ADQ_ARM_IMMEDIATELY.

• For all digitizers, set the daisy chain resynchronization_enabled parameter to 1.

• Enable reference clock synchronization for the daisy chain source, see Section 6.11.

– For the primary digitizer, enable reference clock synchronization for the software con-

trolled event source.

– For secondary digitizers, enable reference clock synchronization for the event source

associated with the digitizer’s daisy chain input port.

• Configure the timestamp synchronization source and the edge sensitivity.

– For the primary digitizer, set the source to ADQ_EVENT_SOURCE_SOFTWARE and the edge to
ADQ_EDGE_RISING.

– For secondary digitizers, set the set the source to the event source associated with the
daisy chain input port and the edge to ADQ_EDGE_RISING.

• For all digitizers, set the timestamp synchronization mode to ADQ_SYNCHRONIZATION_MODE_
FIRST.

• For all digitizers, set the timestamp synchronization arm parameter to ADQ_ARM_IMMEDIATELY.

• Set the timestamp synchronization seed to

seed = 16 · position · Tref ,samples (20)

where Tref ,samples is the period of the reference clock in samples. This value can be calculated

using the clock system parameters as

Tref ,samples =
sampling_frequency
reference_frequency

. (21)

This is guaranteed to be an integer due to the prerequisite discussed in Section 7.4.6.

3. For the primary digitizer, issue the timestamp synchronization event by calling SWTrig().

4. Read the timestamp synchronization status (pass ADQ_STATUS_ID_TIMESTAMP_SYNCHRONIZATION
to GetStatus()) for each digitizer and verify that the counter has been incremented by one.

5. Configure the daisy chain for data acquisition.

• For the primary digitizer, set the daisy chain source and edge to the desired trigger source.
To trigger on a signal level, the signal level matrix (ADQ_EVENT_SOURCE_LEVEL_MATRIX) must
be used, see Section 6.5. The regular signal level event source is not supported.

• For secondary digitizers, set the daisy chain source to the port used for daisy chain input and
the edge sensitivity to ADQ_EDGE_RISING.

ADQ3 Series Digitizers — User Guide spdevices.com Page 77 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• For all digitizers, set the position in the daisy chain. This value starts at zero for the primary
digitizer and increments by one each time the daisy chain signal is resynchronized to the

reference clock.

� Important

Multiple digitizersmay have the same positionwithin the chain, depending on the topology.

• For all digitizers, set the daisy chain arm parameter to ADQ_ARM_AT_ACQUISITION_START.

• For secondary digitizers, enable reference clock synchronization for the daisy chain source,
see Section 6.11. The reference clock synchronization should not be enabled for the primary

digitizer unless the that behavior is specifically desired.

6. Configure the data acquisition process.

• Set the trigger_source and trigger_edge to the values specified in step 5, i.e. the daisy

chain module’s source and edge.

• Set the horizontal_offset to

horizontal_offset =

−Tref ,samples(1+position)+L

skip_factor position > 0

0 position = 0
(22)

where Tref ,samples is the period of the reference clock in samples (21), and L is an extra offset

that is required if the signal level event source matrix is used. The values of L are listed in

Table 8. For all other event sources, L should be set to zero. The skip_factor is the sample
skip factor, see Section 5.2.

� Important

The horizontal_offset must be set to nearest supported value greater than or equal to
the calculated value.

• Set the record length to

record_length =

N + Tref ,samples, position > 0

N position = 0
(23)

where N is the desired record length in samples, Tref ,samples is the period of the reference

clock in samples (21). This addition ensures that the data captured by the secondary digitizers

overlap the data capture by the primary digitizer (see Fig. 24).

7.4.8 Runtime Error Reporting

During operation, a digitizer continuously monitors its own segment of the daisy chain for twomain issues:

• a setup_time_warning, indicating that a secondary digitizer has received an edge of the daisy

chain signal close to the edge of the reference clock; and

ADQ3 Series Digitizers — User Guide spdevices.com Page 78 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Table 8: Additional horizontal offset required for secondary digitizers in the daisy chain when the signal

level event source matrix (ADQ_EVENT_SOURCE_LEVEL_MATRIX) is used.

Model Firmware Extra horizontal offset L

ADQ30 1CH 880 samples

ADQ32 2CH 880 samples

1CH 1552 samples

ADQ33 2CH 880 samples

ADQ35 2CH 1744 samples

1CH 3104 samples

ADQ36 4CH 784 samples

2CH 1552 samples

• a rearm_error, indicating that the trigger source selected for the primary digitizer emitted a new
trigger event during the rearm period.

These two status conditions are accessed individually for each digitizer through the status reporting

mechanism GetStatus() by passing the identifier ADQ_STATUS_ID_DAISY_CHAIN. They are both binary
conditions and sticky, indicating that an issue has occurred at some point earlier in time. The values are

cleared after each call to GetStatus().
The setup_time_warning can be visualized in Fig. 24 as a secondary digitizer receiving the edge

of the daisy chain signal in close proximity to a reference clock edge (where it is supposed to trigger its

data acquisition process). This can occur due to large propagation delay between digitizers, normally

caused by long cables or suboptimal topologies. The status is a warning and not an error because it

does not prevent the propagation of the daisy chain signal. Once asserted, the daisy chain will continue

to operate normally. However, as the delay increases, there will be a point where the edge of the daisy

chain signal is pushed into the next reference clock cycle—at which point a warning condition is no longer

reported, but the acquired data will be misaligned. The time window (the offset from the reference clock

edge) used to monitor this warning scales with the sampling_frequency. A high frequency yields a short
window and vice versa.

The rearm_error is asserted if the primary digitizer’s daisy signal propagation module has detected
a trigger event during its rearm period, which is static at two reference clock cycles. Note that this is

not the same as the rearm time of the full daisy chain, which scales with the record length according

to (15) in Section 7.4.6. If asserted, the trigger source is definitely running at an event rate that is too

high. However, if cleared, the rearm time of the full daisy chain may still be violated. This will manifest

as missing data.

ADQ3 Series Digitizers — User Guide spdevices.com Page 79 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

7.5 Fractional-N PLL

� Important

The fractional-N PLL function is currently only supported on the ADQ35-PCIe digitizer.

The fractional-N PLL function is intended for use cases involving the FWATD firmware (see Section 5.6).

When averaging is enabled, an undesired phenomenon called pattern noise can become visible, where

non-white noise waveforms are correlated with the trigger frequency, which in turnmeans that they cannot

be reduced by averaging. For this reason, it is beneficial to use a trigger frequency which is uncorrelated

with as many of these noise sources as possible. For example, a trigger period which is an odd number

of ADC samples long can result in reduced noise compared to an even number of samples, as many

noise sources are correlated with even subdivisions of the sampling frequency.

While the periodic event generator can be set up with a period that is an odd number of samples long,

the connection between the periodic event source and an output port such as the TRIG port has limited

time resolution, and the resulting waveform will in practice always be an even number of samples long.

The fractional-N PLL differs compared to the periodic event generator in that the resulting signal can be

output with full time precision on the TRIG port of the digitizer.

The fractional-N PLL is configured by setting the desired frequency in Hz. An algorithm will then pick

a frequency close to this value which is maximally uncorrelated with the various periodic noise sources

of the digitizer. The resulting frequency, which can differ significantly from the desired frequency, can be

read back using GetParameters().
The fractional-N PLL function can only be connected to the TRIG port of the digitizer, configured as an

output. This is done by setting the function to ADQ_FUNCTION_FRACTIONAL_N_PLL, and the direction
to ADQ_DIRECTION_OUT. Note that the digitizer can still trigger on the TRIG port when it is configured as

an output.

ADQ3 Series Digitizers — User Guide spdevices.com Page 80 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

8 Ports

A port is a physical interface on the digitizer, excluding the analog inputs (the channels) and the device-

to-host interface (e.g. the PCIe board connector). A port may consist of one or several pins, depending

on the digitizer model. A pin represents an interface for an electrical signal.

A port may offer a unique feature set, a shared feature set or a combination of the two. For example,

edge events on both the TRIG and SYNC ports may be used to trigger the data acquisition process, but

the timing precision of TRIG events is higher. Thus, high precision edge detection is a unique feature of

the TRIG port. However, both ports can be configured to output the digital signal from one of the internal

pulse generators—either targeting the same generator, or different generators. Thus, pulse generator

output is a shared feature.

A port may also be dedicated to a specific feature, e.g. the CLK port exposes a signal path to the

digitizer’s clocking system (Section 4). The outline of this section is as follows:

• Section 8.1 describes the connector map for each ADQ3 series digitizer. A schematic view of the

physical connectors are presented together with tables listing the properties of each connector pin.

• Section 8.2 provides a functional view of a pin using single-ended (SE) signaling.

• Section 8.3 provides a functional view of a pin using differential signaling.

• Section 8.4 provides a functional view of a power pin.

• Section 8.5 provides a functional view of a clock pin.

• Section 8.6 provides a description of how to configure the parameters of a pin.

ADQ3 Series Digitizers — User Guide spdevices.com Page 81 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

8.1 Connector Map

This section presents the connector map for eachADQ3 series digitizer. Refer to the corresponding sub-

section for information about the digitizer’s physical connectors and how their pins map to the interface

provided by the API.

8.1.1 ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe, ADQ35-PCIe

There are four single-pin connectors:

• TRIG, mapping to ADQ_PORT_TRIG,

• SYNC, mapping to ADQ_PORT_SYNC,

• GPIO, mapping to ADQ_PORT_GPIOA;

• CLK, mapping to ADQ_PORT_CLK.

Additionally, there is one connector for a flexible flat cable (FFC):

• FFC, housing the two ports: ADQ_PORT_GPIOB and ADQ_PORT_GPIOC

The mapping between indexes in the port’s pin array and the connector pins are shown in Fig. 29.

Table 9 presents the capabilities of each pin. Refer to the Sections 8.2–8.6 for more information about

the pin parameters and how to configure them.

0 0

TRIG SYNC

0

GPIO

0

CLK

FFC

G
PIO

B
0 P

G
PIO

B
0 N

G
PIO

B
1 P

G
PIO

B
1 N

G
PIO

B
2 P

G
PIO

B
2 N

G
PIO

B
3 P

G
PIO

B
3 N

G
PIO

B
4 P

G
PIO

B
4 N

G
PIO

B
5 P

G
PIO

B
5 N

G
PIO

B
6 P

G
PIO

B
6 N

G
PIO

B
7 P

G
PIO

B
7 N

+3V3
+3V3
+3V3
+1V8

G
PIO

C
0

G
PIO

C
1

G
PIO

C
2

G
PIO

C
3

G
PIO

C
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

GPIOB — differential signals
GPIOC — single ended signals
Power — always enabled
GND
Reserved

Top PCB edge

Figure 29: Connector overview for ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe and ADQ35-PCIe.

ADQ3 Series Digitizers — User Guide spdevices.com Page 82 of 327

https://www.spdevices.com

C
la
s
s
ific

a
tio

n
R
e
v
is
io
n

P
u
b
lic

2
0
2
5
.1
.1

D
o
c
u
m
e
n
t
ID

D
a
te

2
1
-2
5
3
9

2
0
2
5
-0
4
-1
6

Port [pin] ADQ
_FU

NCT
ION

_PA
TTE

RN_
GEN

ERA
TOR

0

ADQ
_FU

NCT
ION

_PA
TTE

RN_
GEN

ERA
TOR

1

ADQ
_FU

NCT
ION

_GP
IO

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R0

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R1

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R2

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R3

ADQ
_FU

NCT
ION

_US
ER_

LOG
IC

ADQ
_FU

NCT
ION

_DA
ISY

_CH
AIN

ADQ
_FU

NCT
ION

_FR
ACT

ION
AL_

N_P
LL

Ev
en
t s
ou
rc
e

Di
re
ct
io
n

In
pu
t i
m
pe
da
nc
e

Ty
pe

TRIG[0] � � � � � � � � � �
2

� I/O 50 Ω/ High1 Single-ended

SYNC[0] � � � � � � � � � � I/O 50 Ω/ High1 Single-ended

CLK[0] I/O 50 Ω/ High1 Clock

GPIOA[0] � � � � � � � � � � I/O 50 Ω/ High1 Single-ended

GPIOB[0] I 100 Ω Differential

GPIOB[1] I 100 Ω Differential

GPIOB[2] I 100 Ω Differential

GPIOB[3] I 100 Ω Differential

GPIOB[4] I 100 Ω Differential

GPIOB[5] I 100 Ω Differential

GPIOB[6] I 100 Ω Differential

GPIOB[7] I 100 Ω Differential

GPIOC[0] � � I/O High Single-ended

GPIOC[1] � � I/O High Single-ended

GPIOC[2] � � I/O High Single-ended

GPIOC[3] � � I/O High Single-ended

GPIOC[4] � � I/O High Single-ended

Table 9: Connector map for ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe and ADQ35-PCIe.
1 The input_impedance is configurable via the corresponding pin parameter.
2 The ADQ_FUNCTION_FRACTIONAL_N_PLL function is only supported on ADQ35-PCIe.

A
D
Q
3
S
e
rie
s
D
ig
itiz

e
rs
—

U
s
e
r
G
u
id
e

s
p
d
e
v
ic
e
s
.c
o
m

P
a
g
e
8
3
o
f
3
2
7

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

8.1.2 ADQ36-PXIe

There are three single-pin connectors:

• TRIG, mapping to ADQ_PORT_TRIG,

• SYNC, mapping to ADQ_PORT_SYNC; and

• CLK, mapping to ADQ_PORT_CLK.

Additionally, there are two multi-pin connectors:

• GPIO, housing the three ports: ADQ_PORT_GPIOA, ADQ_PORT_GPIOB and ADQ_PORT_GPIOC; and

• PXIe, mapping to ADQ_PORT_PXIE.

The mapping between indexes in the port’s pin array and the connector pins are shown in Fig. 30.

Table 10 presents the capabilities of each pin. Refer to the Sections 8.2–8.6 for more information about

the pin parameters and how to configure them.

� Example

The GPIOAport contains 12 pins, indexed from 0 to 11 in the corresponding pin array. The parameters
for pin[0] control connector pin 31, pin[1] connector pin 32 and so on.

� Example

The GPIOB port contains 7 pins using differential signaling, meaning that each port pin involves two

connector pins: P and N. The port pins are indexed from 0 to 6 in the corresponding pin array where
pin[0] maps to connector pins 1 and 2.

01211 3456789100

N P6 N P5 N P4 N P3 N P2 N P1 N P0

GPIOA — single ended signals

GPIOB — differential signals

GPIOC — power

Reserved

GND

123456789101112131415

161718192021222324252627282930

3132333435363738394041424344
++

⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚ ⏚

⏚

GPIO

0 0

TRIG SYNC

0

CLK PXIe

STARB

STARC

Figure 30: Connector overview for ADQ36-PXIe.

ADQ3 Series Digitizers — User Guide spdevices.com Page 84 of 327

https://www.spdevices.com

C
la
s
s
ific

a
tio

n
R
e
v
is
io
n

P
u
b
lic

2
0
2
5
.1
.1

D
o
c
u
m
e
n
t
ID

D
a
te

2
1
-2
5
3
9

2
0
2
5
-0
4
-1
6

Port [pin] ADQ
_FU

NCT
ION

_PA
TTE

RN_
GEN

ERA
TOR

0

ADQ
_FU

NCT
ION

_PA
TTE

RN_
GEN

ERA
TOR

1

ADQ
_FU

NCT
ION

_GP
IO

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R0

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R1

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R2

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R3

ADQ
_FU

NCT
ION

_US
ER_

LOG
IC

ADQ
_FU

NCT
ION

_DA
ISY

_CH
AIN

ADQ
_FU

NCT
ION

_FR
ACT

ION
AL_

N_P
LL

Ev
en
t s
ou
rc
e

Di
re
ct
io
n

In
pu
t i
m
pe
da
nc
e

Ty
pe

TRIG[0] � � � � � � � � � � I/O 50 Ω/ High1 Single-ended

SYNC[0] � � � � � � � � � � I/O 50 Ω/ High1 Single-ended

CLK[0] I/O 50 Ω/ High1 Clock

GPIOA[0] � � � � � � � � � � I/O2 High Single-ended

GPIOA[1] � � � � � � � � � I/O2 High Single-ended

GPIOA[2] � � � � � � � � � I/O2 High Single-ended

GPIOA[3] � � � � � � � � � I/O2 High Single-ended

GPIOA[4] � � � � � � � � � I/O2 High Single-ended

GPIOA[5] � � � � � � � � � I/O2 High Single-ended

GPIOA[6] � � � � � � � � � I/O2 High Single-ended

GPIOA[7] � � � � � � � � � I/O2 High Single-ended

GPIOA[8] � � � � � � � � � I/O2 High Single-ended

GPIOA[9] � � � � � � � � � I/O2 High Single-ended

GPIOA[10] � � � � � � � � � I/O2 High Single-ended

GPIOA[11] � � � � � � � � � I/O2 High Single-ended

Table 10: Connector map for ADQ36-PXIe.
1 The input_impedance is configurable via the corresponding pin parameter.
2 The pin direction is controlled in groups of two: pins 2n and 2n+ 1 must have the same I/O configuration.

A
D
Q
3
S
e
rie
s
D
ig
itiz

e
rs
—

U
s
e
r
G
u
id
e

s
p
d
e
v
ic
e
s
.c
o
m

P
a
g
e
8
5
o
f
3
2
7

https://www.spdevices.com

C
la
s
s
ific

a
tio

n
R
e
v
is
io
n

P
u
b
lic

2
0
2
5
.1
.1

D
o
c
u
m
e
n
t
ID

D
a
te

2
1
-2
5
3
9

2
0
2
5
-0
4
-1
6

Port [pin] ADQ
_FU

NCT
ION

_PA
TTE

RN_
GEN

ERA
TOR

0

ADQ
_FU

NCT
ION

_PA
TTE

RN_
GEN

ERA
TOR

1

ADQ
_FU

NCT
ION

_GP
IO

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R0

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R1

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R2

ADQ
_FU

NCT
ION

_PU
LSE

_GE
NER

ATO
R3

ADQ
_FU

NCT
ION

_US
ER_

LOG
IC

ADQ
_FU

NCT
ION

_DA
ISY

_CH
AIN

ADQ
_FU

NCT
ION

_FR
ACT

ION
AL_

N_P
LL

Ev
en
t s
ou
rc
e

Di
re
ct
io
n

In
pu
t i
m
pe
da
nc
e

Ty
pe

GPIOB[0] � I 100 Ω Differential

GPIOB[1] I 100 Ω Differential

GPIOB[2] I 100 Ω Differential

GPIOB[3] I 100 Ω Differential

GPIOB[4] � � � � � � � � � O Differential

GPIOB[5] � � � � � � � � � O Differential

GPIOB[6] � � � � � � � � � O Differential

GPIOC[0] O Power

PXIE[STARB] � I 100 Ω Differential

PXIE[STARC]� � � � � � � � � O Differential

PXIE[TRIG0]� � � � � � � � � � I/O High Single-ended

PXIE[TRIG1]� � � � � � � � � � I/O High Single-ended

Table 10 (continued): Connector map for ADQ36-PXIe.

A
D
Q
3
S
e
rie
s
D
ig
itiz

e
rs
—

U
s
e
r
G
u
id
e

s
p
d
e
v
ic
e
s
.c
o
m

P
a
g
e
8
6
o
f
3
2
7

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

8.2 Single-Ended Signaling

In single-ended signaling, one wire carries a varying voltage and the signal is extracted by comparing

against a fixed reference voltage. This reference voltage is ground for all ADQ3 series digitizers. Fig. 31

presents a functional block diagram of a bidirectional pin using single-ended signaling.

PINx

Enable

Event source

Logic value (read)

F0

Fn

Function

⦙

50 Ω

O
nl

y
su

pp
or

te
d

pi
ns

Only supported pins

Figure 31: A functional block diagram of a pin using single-ended signaling.

A bidirectional pin defaults to an input, with the output buffer disabled. Some pins have configurable

input impedance and some pins have an event source associated with them. If the output buffer is

enabled, the digitizer starts driving the output signal from the selected function source (functions are

described in Section 7). As an output, the impedance is fixed. The specific capabilities of each pin is

listed in the connector map tables in Section 8.1. Refer to Section 8.6 for details on how to configure

the pin parameters. Refer to the corresponding product datasheet for pin specifications, e.g. signaling

voltages and maximum ratings.

8.3 Differential Signaling

In differential signaling, two wires carry varying voltages and the signal is extracted by comparing their

voltages. This means that a signal of this type is transmitted, or received, using two physical pins on the

digitizer. Figs. 32 and 33 each present a functional block diagram of a unidirectional pin using differential

signaling.

Event source

Logic value (read)

P

N

PINx

Only supported pins

Figure 32: A functional block diagram of an input pin using differential signaling.

The properties of the input and output paths are similar to that of a pin using single-ended signaling

(Section 8.2). Some input pins have an associated event source, though the input impedance is not

configurable for this type of pin. The specific capabilities of each pin is listed in the connector map tables

ADQ3 Series Digitizers — User Guide spdevices.com Page 87 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

PINx
F0

Fn

Enable Function

P

N ⦙

Figure 33: A functional block diagram of an output pin using differential signaling.

in Section 8.1. Refer to Section 8.6 for details on how to configure the pin parameters. Refer to the

corresponding product datasheet for pin specifications, e.g. signaling voltages and maximum ratings.

� Important

Event sources associated with a differential input may be unstable if left unconnected. When the

signals are floating, events may be generated at random. Make sure to only use these event sources

when the input is driven in accordance with the datasheet specification. [1] [2] [3] [4]

8.4 Power

Apower pin is capable of capable of providing a current at a constant voltage to power external electrical

circuits. The output current is limited by the digitizer so as to not damage the power supply. Fig. 34

presents a functional block diagram of a power pin.

Current
limiter

PINx

+

Figure 34: A functional block diagram of a pin capable of supplying power to external circuitry.

In terms of configuration, a power pin only offers an enable/disable mechanism. By default, the pin

is disabled, disconnecting the power supply. Setting the pin parameter value to 1 will enable the pin

and connect the power supply. Returning the parameter to 0 will disable the pin. Refer to Section 8.6

for details on how to configure the pin parameters. Refer to the corresponding product datasheet for pin

specifications, e.g. output voltage and maximum current.

8.5 Clock

A clock pin features dedicated routing to the digitizer’s clock system. The purpose is to either receive a

clock signal using the input path, or to use the output path to transmit a clock signal, making the digitizer

into a reference for other external devices. Refer to Section 4 for more information about the clock

system. Fig. 35 presents a functional block diagram of a clock pin.

ADQ3 Series Digitizers — User Guide spdevices.com Page 88 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Enable

To clock system

From clock system

PINx

50 Ω

Figure 35: A functional block diagram of a pin with dedicated routing to the digitizer’s clock system.

A clock pin allows configuration of the port direction as well as the input impedance. Refer to Sec-

tion 8.6 for details on how to configure the pin parameters and to the corresponding product datasheet

for pin specifications, e.g. signaling voltages and maximum ratings.

8.6 Pin Configuration

The properties of a pin is configured as part of the parameter set for the enclosing port. This means that

while the parameters of a pin may be controlled individually, the parameters are updated for all the pins

in a port at the same time.

For each port, the pin parameters are organized into an array with ADQ_MAX_NOF_PINS entries. How-
ever, only a subset of these may be active entries, i.e. mapping to an actual pin in the port. The pa-

rameters for inactive entries are ignored. The number of active entries in the pin array is determined
by the value of the port’s corresponding constant parameter nof_pins. In general, the array indexing

starts at zero, meaning that the parameters of the first pin in the port are given by pin[0]. The exception
to this rule are the PXIe and MTCA ports, for which the pins are named and preferably accessed as

pin[ADQ_PIN_PXIE_STARB].
Apin is configured as an input by assigning the value ADQ_DIRECTION_IN to the parameter direction.

Additionally, if the pin supports it, the parameter input_impedance may be set to an appropriate value
from the enumeration ADQImpedance to modify the input impedance.

A pin is configured as an output by assigning the value ADQ_DIRECTION_OUT to the parameter

direction. This enables the output buffer. Since the pin must always output a well-defined signal, a

function must be selected from those supported by the pin. The output signal can be digitally inverted

by setting invert_output to a nonzero value.

� Note

For bidirectional pins, the input path is always active, allowing the digitizer to monitor its own output.

The pin parameter value behaves differently depending on the API function operating on the parameter
set:

• If the pin has an input path, a call to GetParameters() will set value to reflect the digital signal

level currently at the pin. The timing of this operation is unknown, i.e. consecutive calls cannot be

ADQ3 Series Digitizers — User Guide spdevices.com Page 89 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

used to sample the input pin with any guaranteed precision. This operation is not supported for

pins without an input path.

• If the pin is configured as an output, a call to SetParameters() together with the function set

to ADQ_FUNCTION_GPIO, will set the digital signal level of the pin to value. This operation is not

supported for pins without an output path.

8.6.1 Example: Pattern Generator Output

The code snippet below sets up the TRIG port as an output and selects the first pattern generator (Sec-

tion 7.1) as the source for the output signal.

/* Initialize the parameters for the TRIG port to their default values. */
struct ADQPortParameters port_trig;
int result = ADQ_InitializeParameters(adq_cu, adq_num,

ADQ_PARAMETER_ID_PORT_TRIG, &port_trig);
if (result != sizeof(port_trig))
{
/* Handle error */

}

/* Enable the output buffer and select the output of pattern generator 0. */
port_trig.pin[0].function = ADQ_FUNCTION_PATTERN_GENERATOR0;
port_trig.pin[0].direction = ADQ_DIRECTION_OUT;
port_trig.pin[0].invert_output = 0;

/* Set the port parameters. */
result = ADQ_SetParameters(adq_cu, adq_num, &port_trig);
if (result != sizeof(port_trig))
{
/* Handle error */

}

ADQ3 Series Digitizers — User Guide spdevices.com Page 90 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

8.6.2 Example: Pulse Generator Output

The code snippet below sets up the SYNC port as an output and selects the first pulse generator (Sec-

tion 7.2) as the source for the output signal. The pulse generator is configured to follow the periodic

event source to create signal with 50% duty cycle with the same frequency as the event source.

This particular code snippet uses the top-level parameter struct to configure all the relevant parts of

the system with one single call.

� Important

The code below will result in all the untouched parameters being set to their default values due to

the call to InitializeParameters(). These calls are meant to provide context for the parameter

assignments needed to accomplish this particular task.

/* Initialize the parameters for the TRIG port to their default values. */
struct ADQParameters adq;
int result = ADQ_InitializeParameters(adq_cu, adq_num, ADQ_PARAMETER_ID_TOP, &adq);
if (result != sizeof(adq))
{
/* Handle error */

}

/* Configure the periodic event source to run at 1 kHz. */
adq.event_source.periodic.frequency = 1000.0;

/* Configure the pulse generator to ’follow’ the periodic event source,
yielding a duty cycle of 50%. */

adq.function.pulse_generator[0].source = ADQ_EVENT_SOURCE_PERIODIC;
adq.function.pulse_generator[0].edge = ADQ_EDGE_RISING;
adq.function.pulse_generator[0].length = -1;

/* Enable the output buffer and select the output of pulse generator 0. */
adq.port[ADQ_PORT_SYNC].pin[0].function = ADQ_FUNCTION_PULSE_GENERATOR0;
adq.port[ADQ_PORT_SYNC].pin[0].direction = ADQ_DIRECTION_OUT;
adq.port[ADQ_PORT_SYNC].pin[0].invert_output = 0;

/* Set the port parameters. */
result = ADQ_SetParameters(adq_cu, adq_num, &adq);
if (result != sizeof(adq))
{
/* Handle error */

}

ADQ3 Series Digitizers — User Guide spdevices.com Page 91 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

8.6.3 Example: Software Controlled GPIO

The code snippet below demonstrates software controlled GPIO of pins 0 and 1 in the GPIOA port. Note

that not all ADQ3 series digitizers have two pins in the GPIOA port.

/* Initialize the parameters of the GPIOA port to their default values. */
struct ADQPortParameters port_gpioa;
int result = ADQ_InitializeParameters(adq_cu, adq_num,

ADQ_PARAMETER_ID_PORT_GPIOA, &port_gpioa);
if (result != sizeof(port_gpioa))
{
/* Handle error */

}

/* Configure GPIOA0 as a software controlled output and
keep the other pins as inputs. */

port_gpioa.pin[0].function = ADQ_FUNCTION_GPIO;
port_gpioa.pin[0].direction = ADQ_DIRECTION_OUT;
port_gpioa.pin[0].invert_output = 0;
port_gpioa.pin[0].value = 1;

/* Set the port parameters. GPIOA0 will transition to logic high. */
result = ADQ_SetParameters(adq_cu, adq_num, &port_gpioa);
if (result != sizeof(port_gpioa))
{
/* Handle error */

}

/* Get the current parameters, sampling all pins with an input path. */
result = ADQ_GetParameters(adq_cu, adq_num,

ADQ_PARAMETER_ID_PORT_GPIOA, &port_gpioa);
if (result != sizeof(port_gpioa))
{
/* Handle error */

}

/* Use the logic level of of GPIOA1 to direct the control flow. */
if (port_gpioa.pin[1].value != 0)
/* GPIOA1 is logic high. */

else
/* GPIOA1 is logic low. */

/* Set GPIOA0 to logic low. */
port_gpioa.pin[0].value = 0;
result = ADQ_SetParameters(adq_cu, adq_num, &port_gpioa);
if (result != sizeof(port_gpioa))
{
/* Handle error */

}

ADQ3 Series Digitizers — User Guide spdevices.com Page 92 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

8.6.4 Example: Reference Clock Output

The code snippet below demonstrates how to output the internal reference clock on the CLK port.

/* Initialize the parameters of the CLK port to their default values. */
struct ADQPortParameters port_clk;
int result = ADQ_InitializeParameters(adq_cu, adq_num,

ADQ_PARAMETER_ID_PORT_CLK, &port_clk);
if (result != sizeof(port_clk))
{
/* Handle error */

}

/* Configure CLK to output the reference clock. */
port_clk.pin[0].direction = ADQ_DIRECTION_OUT;

/* Set the port parameters. */
result = ADQ_SetParameters(adq_cu, adq_num, &port_clk);
if (result != sizeof(port_clk))
{
/* Handle error */

}

ADQ3 Series Digitizers — User Guide spdevices.com Page 93 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

9 Data Acquisition

Data acquisition is the process of extracting records from the ADC data stream on a trigger event and

storing this data in the digitizer’s on-boardmemory. Thismemory acts as a buffer for the physical interface

(PCIe).

� Note

The digitizer’s on-board memory acts as a buffer for the physical interface.

� Important

Data acquisition is only possible when the digitizer’s licenses fulfill the requirements of the active

firmware. See Section 12.2 for more information.

The core acquisition parameters are:

• the number of records to acquire,

• the record length, expressed either

– as a static value; or

– as constraints for a dynamic record (see Section 9.1),

• the trigger event source and the edge sensitivity (see Section 6),

• the horizontal offset; and

• the trigger blocking source (see Section 9.5).

These are members of the parameter set ADQDataAcquisitionParameters and are independently con-
figurable for each digitizer channel. A channel is considered active if the number of records to acquire

(nof_records) is set to a nonzero value. The special value ADQ_INFINITE_NOF_RECORDS may be used
to specify an infinite acquisition.

For each active channel, the configuration differs slightly depending on if the length of a record should

be static (default) or dynamic. Configuring the acquisition for records with static length is straightforward:

set the record_length to the desired length in samples. Additionally, the special value ADQ_INFINITE_
RECORD_LENGTH is also allowed and signifies the acquisition of a record that never ends (infinite length).
This acquisition mode places additional constraints on the data transfer and readout processes, see

Section 10.5.7 for details. There is more to consider when configuring records with dynamic length.

Refer to Section 9.1 for a detailed description of this acquisition behavior and the controlling parameters.

The trigger_source is expected to be set to one of the digitizer’s event sources. The trigger source
also needs to support the selected edge sensitivity trigger_edge.

The horizontal_offset shifts the region of captured data in relation to the trigger event. Fig. 36

presents how a record of a constant length is acquired for three values of the horizontal offset:

(a) A negative horizontal offset shifts the region captured as a record to an earlier point in time, relative

to the trigger event. This is sometimes known as pretrigger.

(b) A horizontal offset of zero performs no shift.

ADQ3 Series Digitizers — User Guide spdevices.com Page 94 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

(c) A horizontal offset greater than zero shifts the region captured as a record to a later point in time.

This is sometimes known as trigger delay.

� Note

The trigger delay mechanism is implemented as an event queue with a maximum capacity of 512

events. This means that if 512 trigger events are observed before the first entry is ejected (the

queue is filled to capacity within the specified trigger delay), the 513th event will not be detected.

This is rarely a problem in practice.

Sample not in record
Sample in record

T T
Horizontal

offset
< 0

ADC data
Channel N

T
Horizontal

offset
> 0Horizontal offset = 0

Record length

(a) (b) (c)

.timestamp

t

T

ADQGen4RecordHeader

.record_startADQGen4RecordHeader
.sampling_periodADQGen4RecordHeader .time_unitADQGen4RecordHeader

Figure 36: Illustration of how the parameters of the data acquisition process affect the acquisition of a

record (the shaded region). Relative values, e.g. the record header field record_start, are all anchored
in the trigger event T. The header field timestamp specifies where the trigger event is located on the

timing grid.

9.1 Dynamic Record Length

The digitizer can be configured to acquire records with dynamic length. Compared to records with a

static length, these records have their length determined in real time by the data acquisition process.

This feature is useful for sophisticated data rate reduction in cases where the region of interest in the

ADC data stream may vary in size.

For example, applications measuring pulses with varying shape can have a record fit a pulse exactly,

rather than having to define a static record length large enough to capture the worst-case pulse. The

drawback of the latter method is that a long record framing a short pulse will contain a large “silent” part,

ADQ3 Series Digitizers — User Guide spdevices.com Page 95 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

i.e. data that is not interesting but has been transferred to the host computer nonetheless. Discarding

these regions in the acquisition process is often called zero suppression. See Section 9.1.3 for additional

details.

Another acquisition behavior that can be realized using the dynamic length mechanism is gated acqui-

sition. In such a system, an external digital signal, e.g. input on the TRIG connector, dynamically defines

a region of interest which should be acquired as a single continuous record. Refer to Section 9.1.4 for

an example.

By default, the digitizer is configured to acquire records with static length. To change the acqui-

sition behavior, set dynamic_record_length_enabled to a nonzero value. The events from the se-

lected trigger_source will define the dynamic part of the record starting from an event of the spec-

ified trigger_edge and extending to its complementary (opposite) edge event. The selection of the

complementary event is automatic and cannot be chosen independently by the user. For example, if

trigger_edge is set to ADQ_EDGE_RISING, the complementary event is ADQ_EDGE_FALLING of the same
trigger_source and vice versa. For the sake of simplicity, the trigger_edge cannot be set to ADQ_
EDGE_BOTH in this acquisition mode.

Acquiring records with dynamic length places additional requirements on the data transfer process,

since some simplifying assumptions made for records with static length no longer hold true. Refer to

Section 10.5.3 for additional details on how to configure the data transfer process to be able to transfer

records with dynamic length.

� Important

To transfer records with dynamic length, the data transfer process has to be configured accordingly.

Refer to Section 10.5.3 for detailed instructions.

9.1.1 Edge Windows

A record with dynamic length consists of three parts:

• the leading edge window (LEW),

• the dynamic window; and

• the trailing edge window (TEW),

where the two edge windows are static in length and only the dynamic windowmay extend arbitrarily. The

length of the two edge windows must be decided at the time of configuration and is specified by the pa-

rameters dynamic_leading_edge_window_length and dynamic_trailing_edge_window_length. The
length of the leading edge window may be set to zero but the length of the trailing edge window must

always be set to a nonzero value since the record must fulfill the requirements on minimum record length

as the dynamic window length approaches zero. Fig. 37 presents the anatomy of a record with dynamic

length where the trigger_edge is set to ADQ_EDGE_RISING.

9.1.2 Overlap and Maximum Length

Since the leading edge window length is allowed to be greater than the rearm time of the digitizer, con-

secutive records can overlap, defined as the leading edge window of a record including the trailing edge

ADQ3 Series Digitizers — User Guide spdevices.com Page 96 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

 LEW TEW

t

Record

ADQ_EDGE_RISING

trigger_source

ADQ_EDGE_FALLING

Trigger event Complementary event

Dynamic window

T

Figure 37: The anatomy of a record with dynamic length. The trigger_edge is set to ADQ_EDGE_RISING,
automatically selecting the complementary event ADQ_EDGE_FALLING as the stop condition for the dy-

namic window. This region is flanked by two windows of static length, the leading edge window (LEW)

and the trailing edge window (TEW).

window of the previous record. When this occurs, the first record is extended with the contents of the

second record, as if its original end condition was never met. If a third record also overlaps, the extension

process continues.

The rationale for this behavior is as follows: the dynamic length mechanism exists to allow real-time

events to define the length of the region of interest within the ADC data stream. As such, when the user-

defined edge windows combines with trigger events in close enough proximity to trigger an overlap, the

overlapping region is interpreted as twice as interesting. However, ADC data samples cannot belong to

two separate records at the same time, creating a conflict which is resolved by creating a longer record.

Obviously, this can lead to an unintended situation where a high trigger rate causes a (for practical

purposes) “infinite” record, overflowing the device-to-host interface or overwhelming any subsequent

processing logic. For this reason, it is possible to configure a maximum record length via the parameter

dynamic_record_length_max. When a record reaches this limit, it is forcefully cut short. By default, the

limit is set to the special value ADQ_INFINITE_RECORD_LENGTH, allowing the record to grow indefinitely.

This limit is applied regardless of whether the record is extended or not.

Fig. 38 shows an example where two trigger events occur in such close proximity that their regions

of interest overlap, extending the record until the maximum length is reached, at which point the record

is cut short. The record that propagates to the user will report the trigger event T in the record header
and the trigger event that caused the extension will be suppressed.

9.1.3 Zero Suppression for Unipolar Pulse Data

Fig. 39 presents the concept of using the dynamic record length mechanism to implement zero suppres-

sion for unipolar pulse data. The configuration centers around selecting ADQ_EVENT_SOURCE_LEVEL as
the channel’s trigger_source. Other channels may be triggered with the same acquisition pattern by
targeting the signal level event source for a specific channel, e.g. ADQ_EVENT_SOURCE_LEVEL_CHANNEL0.
The trigger_edge should be set according to the polarity of the pulses, i.e.

• ADQ_EDGE_RISING for pulses with positive polarity; and

• ADQ_EDGE_FALLING for pulses with negative polarity.

ADQ3 Series Digitizers — User Guide spdevices.com Page 97 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Overlap Discarded

Record

Overlap

 LEW TEW

tADQ_EDGE_RISING

trigger_source

ADQ_EDGE_FALLING

Dynamic window

 LEW TEW Dynamic window

ADQ_EDGE_RISING ADQ_EDGE_FALLING

T

 dynamic_record_length_max

Figure 38: An overlap is resolved by extending the record, either until it ends naturally by reaching the

end of the trailing edge window defined by the extension event, or until the maximum length specified by

dynamic_record_length_max is reached.

This will automatically select the complementary event as the point where the level is crossed in the

opposite direction—thus making the record length scale with the pulse width.

The data for regions with a high concentration of pulses (bursts) may end up in the same record,

according to the overlap rules detailed in Section 9.1.2. When this occurs, the record’s timestamp will
point to the trigger event of the first pulse in the burst.

This use case benefits significantly from using the digital baseline stabilization (DBS) signal process-

ing module to ensure a stable baseline with minimal drift. Refer to Section 5.3 for more information.

Optionally, the trigger blocking mechanism (Section 9.5) can be used to implement a detection win-

dow. This window acts as a filter on top of the behavior presented in Fig. 39. A detection window may be

defined and controlled by external events and records can only be acquired while the window is open.

This case is explained in more detail in the context of the FWPD firmware in Section 5.7.8.

R0 R1 R2

t

Figure 39: An example of using the dynamic record length mechanism to realize zero suppression for

pulse data. The trigger_source is set to ADQ_EVENT_SOURCE_LEVEL, making the record length scale

with the width of a pulse. A burst of pulses may end up in the same record if their regions of interest

overlap, as described in Section 9.1.2.

ADQ3 Series Digitizers — User Guide spdevices.com Page 98 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

9.1.4 Gated Acquisition

Fig. 40 shows the concept of using the dynamic record length mechanism to implement gated acquisition.

The configuration centers around using an external signal with two levels: logic high and logic low. The

digitizer should acquire data as long as the signal remains either logic high or logic low, depending on

the polarity. In Fig. 40, logic high defines the gate so the trigger_edge is set to ADQ_EDGE_RISING. The
signal is connected to the TRIG port, thus trigger_source should be set to ADQ_EVENT_SOURCE_TRIG.

By default horizontal_offset is zero, meaning that the start of the record coincides with the trigger
event T. Applying a horizontal offset will shift the acquisition region relative to the trigger. In Fig. 40, a

positive horizontal_offset shifts to the right, delaying the record while still keeping its length defined

by the gate. Conversely, a negative horizontal offset shifts in the other direction. However, the range is

limited such that the sum

|horizontal_offset|+ dynamic_leading_edge_window_length

cannot exceed a certain value. Refer to the parameter documentation for details.

t

TRIG

 LEW TEW

T
horizontal_offset > 0

R0

T

 LEW TEW

R1

Figure 40: An example of using the dynamic record length mechanism to realize gated acquisition. The

gate is defined by a logic high level of the signal connected to the TRIG port. Thus, the trigger_source
should be set to ADQ_EVENT_SOURCE_TRIG and trigger_edge to ADQ_EDGE_RISING. A horizontal_
offset > 0 has been applied, causing the entire acquisition region to shift to the right.

9.2 Rearm Time

The digitizer enforces aminimum time between records, i.e. a window following the end of a record where

trigger events are ignored. This is called the rearm time of the data acquisition process and is specified in

the digitizer’s datasheet [1] [2] [3] [4] and is normally in the range of a few tens of nanoseconds. Through

the parameter rearm_length, it is possible to extend the length of this rearm window. While this is not

normally desired, it offers a simple way to limit the trigger rate to a maximum value. The default value is

set to the minimum allowed rearm time, as specified in the datasheet.

When acquiring records with dynamic length, the rearmwindow behaves slightly differently; the length

extension mechanism (Section 9.1.2) is also activated if a record would begin in the part of the rearm

window extending from zero to the minimum rearm time. In practice, this means that as long as the

rearm_length is set to the minimum value (default), the data acquisition process does not have any

noticeable rearm time for records with dynamic length. However, specifying a rearm_length greater than

ADQ3 Series Digitizers — User Guide spdevices.com Page 99 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

the default value will render the data acquisition process blind to any trigger events occurring outside the

minimum rearm time.

� Example

Consider an oscilloscope-like GUI application where the digitizer is configured to create an infinte

stream of records and a graph is continuously updated to show the latest acquired record. In prac-

tice, displays have a maximum refresh rate, effectively limiting the rate at which information can be

visualized. This directly translates into a maximum trigger rate if the goal is to display every record.

Otherwise, some records will need to be discarded as they would end up between frames.

Consider a refresh rate of 60 Hz and a digitizer with a sampling rate of 2500 MSPS.Apessimistic value

for the length of the rearm window that ensures a maximum trigger rate of 60 Hz is

2500 · 106

60
= 41666666.67 ≈ 41666667

which can be specified as the new rearm_length after ceiling the value to a multiple of the firmware-
specific step size. If the digitizer is configured to acquire records of static length, the value can be

refined as
2500 · 106

60
− record_length.

9.3 Timing Information

The digitizer has a built-in time-keeping mechanism. At power on, a counter starts to monotonically

increment—creating a timing grid that is in phase with the sampling grid. In addition to the acquired ADC

data, the digitizer keeps track of the record’s timestamp and a value called record start. The timestamp

specifies where the trigger event is located on the timing grid. The record start value specifies where the

first sample in the record is located, relative to the timestamp. These values are propagated to the user

application via the record header as the two fields timestamp and record_start. Thus, the timestamp
of the first sample in the record, x[0], is calculated as

tx[0] = timestamp+ record_start. (24)

The header field time_unit specifies the value of one timing grid unit in seconds. The other horizon-

tal header fields, i.e. record_start, timestamp and sampling_period, are expressed as an integer

number of time units.

Note that the timing resolution varies between event sources. For example, a signal level event

will have sample resolution while an event from the TRIG port will have subsample resolution. Refer

to Section 6 for a description of the event sources and to the product datasheet for the information on

timing resolution [1] [2] [3] [4].

� Important

The timing resolution varies between event sources.

ADQ3 Series Digitizers — User Guide spdevices.com Page 100 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

9.3.1 Floating Point Inaccuracies

The time_unit is subject to the general intricacies of floating point numbers. It is sufficiently precise to
fulfill its intended purpose: to specify the value of one timing grid unit in seconds. However, care must

be taken when this value is used for other tasks, e.g. calculating the absolute point in time of a sample.

Floating point numbers are useful because they can be made accurate enough for practical purposes.

However, there is always a trade-off between range and resolution. This is particularly important in

the data acquisition context because a digitizer can output a record with a large number of samples

(wide range), where each sample is taken at comparatively minute intervals (high resolution). A general

expression for the absolute time of the sample at time instance n can be formulated as

tx[n],absolute = (timestamp+ record_start+ n · sampling_period)︸ ︷︷ ︸
Timing grid position (an integer)

·time_unit. (25)

As n increases, so do the requirements on the range of the floating point value tx[n],absolute, while the

requirements on the precision remain the same. An error in the time_unit will scale linearly with n,

causing a potentially significant deviation from the true absolute position of x[n] if (25) is used to calculate

the value. It is up to the user to decide how to represent the sampling points in a way that is sufficient

for the target application.

� Example

Consider a digitizer running at 2.0 GSPS with a timing grid resolution of 8 times the sampling rate.

Using the ubiquitous 64-bit IEEE-754 floating point representation, the time_unitwritten to 32 decimal
places is

0.00000000006250000000000000389260 s

This is close enough to the ideal value of 62.5 ps to be useful in practice. However, the value contains

an error component δ. Applying (25) to determine the absolute time of sample n will magnify this error

to nδ, which could have implications for the target application.

This error is also magnified when attempting to derive the sampling frequency as

fs =
1

sampling_period · time_unit

which in this case yields

fs =
1

8 · 0.0000000000625...
= 1999999999.99999976158... Hz

which only gives the correct value of 2 GHz after rounding.

9.4 Starting and Stopping

Once the acquisition parameters have been set, the data acquisition process is started by calling Start-
DataAcquisition(). This effectively arms the digitizer, which immediately begins acquiring records on
all active channels and writing the resulting data to the on-board memory. Making the data available to

the user application is the task of the data transfer and data readout processes, outlined in Section 10.

ADQ3 Series Digitizers — User Guide spdevices.com Page 101 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

The start of these processes are also controlled by StartDataAcquisition().
Once the digitizer enters the acquisition phase, it will no longer accept changes to its parameters

until the acquisition is stopped. Aborting the acquisition can be done at any time by calling StopData-
Acquisition().

� Important

The digitizer will not accept changes to its parameters while the data acquisition process is running.

9.5 Trigger Blocking

The trigger blocking feature is used to prevent records from being generated by masking trigger events.

Trigger blocking is activated on a per-channel basis by setting the trigger_blocking_source to a sup-
ported function. The data acquisition process will

• block trigger events while the output of this function is logic high (the block state); and

• accept trigger events while the output of this function is logic low (the accept state).

Trigger blocking is disabled by setting trigger_blocking_source to ADQ_FUNCTION_INVALID. This is the
default value. Currently, only the pattern generators, described in Section 7.1, can be used as trigger

blocking sources.

9.5.1 Zero Length Records

The data acquisition process can be configured to emit a record with no data, i.e. with zero length,

when the trigger blocking mechanism transitions from the accept state to the block state without having

observed any trigger events. Fig. 41 shows the principle of operation.

The purpose of a record with this property is to signal the absence of data. This is useful in acquisition

systems running on a repetitive schedule where—whether or not an acquisition window is empty—is

valuable information that should propagate to the user.

The mechanism is directly connected to the signal used for trigger blocking and thus controlled by the

channel’s trigger_blocking_source. The mechanism is disabled by default and may be enabled by

setting the channel-specific parameter zero_length_records_enabled to 1. A zero length record only

consists of a header and may thus only be enabled when metadata is allowed to propagate through the
data transfer layer (Section 10), as determined by the parameter metadata_enabled. See Section 10.5.5
for more information about how these records are received by the user application.

Since a zero length record is not created by a trigger event and contains no data, the timing infor-

mation reported in its header will have limited usefulness. Specifically, record_start is invalid and the
timestamp will only provide a rough estimate of when this record was created relative to the timing grid.
It will be accurate enough for most purposes, such as sorting records chronologically or inferring the

shape of the signal from the trigger_blocking_source. Its precision is in the range of a few sampling

periods. Other header values are valid. For example, if the digitizer is configured to synchronize its

timestamp upon entering the accept state (Section 7.3), the timestamp_synchronization_counter will
correctly reflect this increment, allowing the user to identify which window in the sequence that was empty

of trigger events.

ADQ3 Series Digitizers — User Guide spdevices.com Page 102 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

trigger_blocking_source

R0

trigger_source

t

Block

Accept

Ignored

R1 R2

Accept

Empty

R3
(zero length

record)

Figure 41: If enabled via zero_length_records_enabled, a zero length record is emitted if the trigger
blocking mechanism transitions from the accept state to the block state without having observed any

trigger events.

ADQ3 Series Digitizers — User Guide spdevices.com Page 103 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10 Data Transfer and Data Readout

Once data has been acquired and stored in the on-board memory, it passes into the domain of the data

transfer process. This process moves the data across the physical interface to transfer buffers located

in the memory of an endpoint. An endpoint may be the host computer or a GPU. The destination is

determined by the address configuration of the data transfer process.

If the transfer buffers are located in the host computer’s RAM, the data readout process is available

as an optional layer. With this layer, the data transfer process is managed by a thread which is active

as long as an acquisition is ongoing. Records are passed to the user application through thread-safe

channels with a bidirectional queue interface to allow reusing memory in an efficient manner. Unless the

use case involves advanced requirements, it is recommended to begin developing the user application

by using the data readout interface described in Section 10.5. Fig. 42 presents an overview and the

following sections describe the processes in more detail.

� Important

The data readout process, where records are passed to the user application through thread-safe chan-

nels, is only available when the digitizer transfers data to the host computer’s RAM, i.e. not when the

endpoint is a GPU.

� Note

Unless the use case involves advanced requirements, it is recommended to begin developing the user

application by using the data readout interface described in Section 10.5.

Channel 0

Channel 1

Physical interface Data transfer API

Internal thread

Data transfer Data readout

D

M

0 1 15

D

M

Channel N-1

Endpoint
memory

Data readout API

Transfer buffers

Figure 42: Overview of the data transfer and data readout processes. Data is transferred over the

physical interface to transfer buffers in the endpoint memory. If the transfer buffers reside in the host

computer’s RAM, the data readout process is available as an optional layer. In this case, an internal

thread manages the transfer of data between the digitizer and the host computer. Records are passed

to the user via thread-safe channels corresponding to channels of the digitizer.

ADQ3 Series Digitizers — User Guide spdevices.com Page 104 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10.1 Transfer Buffers

The data from the digitizer’s on-board memory is transferred to the target endpoint and stored in transfer

buffers before being passed on to the user application via one of the two available interfaces. There are

two types of transfer buffers:

• record data transfer buffers; and

• metadata transfer buffers, holding the data that will become record headers.

These are always paired, meaning that each record data transfer buffer have a corresponding meta-

data transfer buffer and vice versa. Record data is always transferred to the endpoint. Whether or not

metadata is transferred is controlled by the channel-specific parameter metadata_enabled.
The parameter nof_buffers sets the number of transfer buffer pairs for a target channel. The value 0

implies that the channel is disabled. No data will be transferred for disabled channels, regardless of the

acquisition parameters.

When record_buffer_memory_owner is set to ADQ_MEMORY_OWNER_API, record data transfer buffers
will be allocated in the host computer’s RAM and managed by the API. The size of the transfer buffers

affect the throughput with the general rule that throughput increases with size. Typically, a buffer size in

the lower MiB range is sufficient to achieve the specified maximum throughput.

The parameter metadata_buffer_memory_owner is symmetrical to record_buffer_memory_owner
in its behavior, but instead controls whether or not metadata transfer buffers are allocated in the host

computer’s RAM and managed by the API. This granular control is useful in situations when record data

and metadata should be transferred to different endpoints.

Transfer buffers need to be contiguous, meaning that they span a single unbroken block of memory in

the target endpoint. In the case where transfer buffers reside in the host computer’s RAM, the allocation

can fail due to fragmentation if the requested memory region is too large. In practice, it is recommended

to use transfer buffers in the lower MiB range and to transfer large records (exceeding the size of a

transfer buffer) in several segments. See Section 10.5.7 for additional details. A transfer buffer should

not be set in the GiB range under normal circumstances.

� Important

A transfer buffer should not be set in the GiB range under normal circumstances. Each transfer buffer

requires a contiguous memory region. Thus, if the size is large, the allocation can fail if the memory

has become fragmented.

� Note

On Linux distributions that support hugepages, it is possible to set up transfer buffers that are much

larger than normal. See Appendix C for more information.

10.1.1 Advanced Parameters

This sections contains descriptions of advanced transfer buffer parameters and use cases. If the user

application reads data via the data readout interface (Section 10.5), these parameters can be ignored.

ADQ3 Series Digitizers — User Guide spdevices.com Page 105 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Important

The parameters outlined in this section can be ignored (use the default values) if the data readout

interface is used.

Packed Transfer Buffers

If packed_buffers_enabled is set to 1 and record_buffer_memory_owner is set to ADQ_MEMORY_OWNER_
API, the record data transfer buffers are grouped by their index and allocated back-to-back (as opposed
to being scattered in the host computer’s RAM). This scheme requires that nof_buffers is set to the

same value for each active channel.

� Example

Consider a two-channel digitizer where

• packed_buffers_enabled is set to 1,

• record_buffer_memory_owner is set to ADQ_MEMORY_OWNER_API,

• record_buffer_size is set to 1024 (bytes); and

• nof_buffers is set to 2 for both channels.

Once these parameters are applied, the record data transfer buffer are allocated as:channel[0].record_buffer[0]
channel[1].record_buffer[0]

channel[0].record_buffer[1]
channel[1].record_buffer[1]

The parameter record_buffer_packed_size will be set by the API to the size of the contiguous mem-
ory region: 2048 in this case.

� Note

The same mechanism applies to the metadata transfer buffers if metadata_buffer_memory_owner is
set to ADQ_MEMORY_OWNER_API, for channels where metadata_enabled is set to 1.

This allocation scheme is useful in multichannel applications with high throughput and small buffer size,

where the transferred data is copied to another location like a disk or a GPU. For a given transfer

buffer index, data from all active channels can be copied from memory with a single operation, re-

ducing overhead. In the example above, record_buffer_packed_size bytes can be copied starting

at channel[0].record_buffer[0] to get the record data for both channels in a single operation. How-
ever, before this option can be enabled, certain setup criteria has to be met. Refer to the parameter

documentation for packed_buffers_enabled for details.

User-Allocated Transfer Buffers

The digitizer can be configured to use transfer buffers that are allocated and managed by the user.

Whether the user provides record data transfer buffers, metadata transfer buffers, or both, can be con-

ADQ3 Series Digitizers — User Guide spdevices.com Page 106 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

trolled via the memory ownership parameters: record_buffer_memory_owner and metadata_buffer_
memory_owner, and the special value ADQ_MEMORY_OWNER_USER.

If thememory owner is set to ADQ_MEMORY_OWNER_USER, the user is expected to fill in the bus addresses
for the corresponding transfer buffer in either record_buffer_bus_address or metadata_buffer_bus_
address, or both. The memory allocated for each transfer buffer must be contiguous and available for
direct memory access (DMA). User supplied transfer buffers can reside in any endpoint, including host

system RAM. The transfer buffers will always be written in strict order (sequentially), i.e. buffer 1 will

always be written after buffer 0.

Hugepages

The API provides convenience functions to manage hugepages on Linux distributions that support

them. Together with the mechanism for user-allocated transfer buffers described earlier in this section,

hugepages can be leveraged to create significantly larger transfer buffers. Refer to Appendix C for

additional details.

10.2 Marker Buffers

Each transfer buffer pair has a correspondingmarker buffer whose purpose is to indicate the status of the

transfer buffer pair, i.e. whether or not new data is available. For most use cases, markers are handled

by the API and are never encountered by the user application. This is the case for the data readout

interface (Section 10.5) where marker_mode is set to ADQ_MARKER_MODE_HOST_AUTO.

� Important

Marker buffers are handled by the API, out of sight from the user when the data readout interface is

used (Section 10.5).

More advanced use cases may require manual handling of the marker buffers. These are outlined in

Section 10.2.1.

10.2.1 Advanced Use Cases

The marker buffer memory can be owned by the user application by setting the parameter marker_mode
to ADQ_MARKER_MODE_USER_ADDR and supplying the marker addresses in marker_buffer_bus_address.
The marker buffers must be available for direct memory access (DMA). When using user supplied marker

buffers, the user application is responsible for detecting updated marker values. Each marker consists of

a 32-bit value starting at zero. The first time a buffer is available, the value 1 is written to the corresponding

marker buffer. Each time new data is available in the buffer the marker value will increment by 1.

� Note

A source code example demonstrating manual marker handling while transferring data to an AMD

GPU is available for Windows platforms as data_transfer_gpu. See Section 15.2 for details on how
to locate this software example.

ADQ3 Series Digitizers — User Guide spdevices.com Page 107 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Important

ADQ_MARKER_MODE_USER_ADDR has limited support for ADQ35 in x8x8 mode. Please contact support

for a solution. For details about x8x8 mode see Appendix B.

10.3 Data Format

Correctly interpreting the record data requires knowledge about the data format. The various formats

are enumerated using integer values and the format of a specific record propagates in the header field
data_format. The possible values are:

ADQ_DATA_FORMAT_INT16

The record data consists of 16-bit signed integers and should be traversed using a pointer of

matching type. The standard firmware represents samples using this format.

ADQ_DATA_FORMAT_INT32

The record data consists of 32-bit signed integers and should be traversed using a pointer of

matching type. The FWATD firmware (Section 5.6) represents samples using this format.

� Important

Currently, the data_format is only set for records transferred to the host computer.

10.4 Data Transfer

� Important

It is recommended to begin developing the user application by using the data readout interface de-

scribed in Section 10.5 unless the use case involves advanced requirements.

The data transfer interface offers a low overhead, highly configurable method for data transfer at the

expense of more complexity in the user application code. The interface is designed to allow the user

to access the transferred data at the transfer buffer level and is typically used in applications where the

final data destination is not the host computer’s RAM, e.g. transferring data to a GPU.

10.4.1 Interface

The data transfer interface consists of four main functions:

• StartDataAcquisition() and StopDataAcquisition() starts and stops the data acquisition and
data transfer processes;

• WaitForP2pBuffers() and UnlockP2pBuffers() allows access to the transfer buffers.

Refer to Sections A.4.4 and A.4.5 for detailed descriptions of these functions.

ADQ3 Series Digitizers — User Guide spdevices.com Page 108 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10.4.2 Program Flowchart

The expected program logic for a user application reading data directly via the data transfer interface is

presented in Fig. 43. The steps are labeled on the left-hand side and are explained in the following list.

Step 1a outlines the configuration for a typical transfer to the host computer’s RAM. Step 1b describes

the configuration for transferring data to a GPU or other peer-to-peer compatible devices.

� Note

The source code example data_transfer_gpu demonstrates the program flow for the configuration in

• step 1a for Windows platforms; and

• step 1b for Linux platforms.

Refer to the example’s README file for information on how to configure the different program flows. See

Section 15.2 for details on how to locate this software example.

1. (a) The starting point for the flow diagram is a configured digitizer. Its parameters are expected

to have been given values that reflect how the digitizer should behave during the acquisition.

The general configuration process is outlined in Section 15.5. This section lists the parameter

values that activate the data transfer process for a typical data transfer to the host computer’s

RAM. How to set up other parts of the digitizer is documented throughout the rest of this user

guide.

• Set marker_mode to ADQ_MARKER_MODE_HOST_MANUAL.

• Set write_lock_enabled to 1 (default).

• Set packed_buffers_enabled to 0 (default).

• Set record_buffer_memory_owner to ADQ_MEMORY_OWNER_API (default).

• For each active channel:

– Set nof_buffers to a value in the range [2, ADQ_MAX_NOF_BUFFERS].

– Decide the number of records per buffer (positive integer). Let this value be N.

– Set record_size to the size of a record (in bytes).

– Set infinite_record_length_enabled to 0 (default).

– Set record_buffer_size to N times the record size.

– Set metadata_enabled to 0.

• For each inactive channel:

– Set nof_buffers to 0 (default).

(b) The starting point for the flow diagram is a configured digitizer. Its parameters are expected

to have been given values that reflect how the digitizer should behave during the acquisition.

The general configuration process is outlined in Section 15.5. This section lists the parameter

values that activates the data transfer process for a typical data transfer to GPU or other

peer-to-peer compatible devices. How to set up other parts of the digitizer is documented

throughout the rest of this user guide.

• Set marker_mode to ADQ_MARKER_MODE_HOST_MANUAL.

ADQ3 Series Digitizers — User Guide spdevices.com Page 109 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Configuration

Wait for peer-to-peer buffers

WaitForP2pBuffers()

Return
value

ADQ_EAGAIN
< 0

ADQ_EOK

Y

N

Process data

Unlock peer-to-peer buffers

UnlockP2pBuffers()

Stop
YN

Start data acqusition

StartDataAcquisition()

Stop data acquisition

StopDataAcquisition()

Timeout

RestartCleanup
YN

2

3

4

5

6

7

8

1

Figure 43: A flowchart for a user application interfacing directly with the data transfer process. The steps

are labeled on the left-hand side and have a matching entry in Section 10.4.2.

ADQ3 Series Digitizers — User Guide spdevices.com Page 110 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• Set write_lock_enabled to 1 (default).

• Set packed_buffers_enabled to 0 (default).

• Set record_buffer_memory_owner to ADQ_MEMORY_OWNER_USER.

• For each active channel:

– Set nof_buffers to a value in the range [2, ADQ_MAX_NOF_BUFFERS].

– Decide the number of records per buffer (positive integer). Let this value be N.

– Set record_size to the expected size (in bytes) of a record.

– Set infinite_record_length_enabled to 0 (default).

– Set record_buffer_size to N times the record size.

– Allocate nof_buffers of size record_buffer_size or bigger in the GPU (or other

peer-to-peer compatible device).

– For each allocated record buffer, enter its bus address into the record_buffer_bus_
address array.

– Set metadata_enabled to 0.

• For each inactive channel:

– Set nof_buffers to 0 (default).

2. The data acquisition and data transfer processes are started simultaneously in a well-defined man-

ner when StartDataAcquisition() is called. This effectively arms the digitizer which immediately
begins observing the trigger conditions.

� Note

The digitizer’s parameters cannot be updated once the acquisition process is running.

3. The main program loop begins by waiting for the completion of at least one transfer buffer by calling

WaitForP2pBuffers(). The parameter timeout is used to determine the behavior of the function
call if data is not immediately available.

4. The function WaitForP2pBuffers() returns ADQ_EOK if at least one transfer buffer is available and
negative values to indicate an error. Apart from the error code ADQ_EAGAIN, which indicates a

timeout, and ADQ_EINVAL which indicates incorrect arguments, the negative values imply that an

unrecoverable error has occurred and that the acquisition has been aborted. In this case, the user

is expected to call StopDataAcquisition().

5. The data processing step is the main purpose of a software application written for a digitizer.

Whether it involves writing the data to disk to analyze at a later time, or performing real-time anal-

ysis, this user guide cannot offer information on implementation details since the requirements

are highly application specific. However, a general guideline is not to perform computation-heavy

operations in the loop (steps 3 to 7). This affects the balancing of the interface and can lead to

overflows (Section 10.6). For high throughput applications, it is recommended to process and un-

lock the buffers of each channel in the same order as they appear in completed_buffers to avoid
stalling the interface.

6. UnlockP2pBuffers() is called to make a buffer available to receive new data. Once a buffer has

been unlocked, modification of its contents may happen at any time. Since the buffers of a channel

ADQ3 Series Digitizers — User Guide spdevices.com Page 111 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

are written in strict order, failing to unlock a buffer will cause the data transfer to halt once the

transfer process reaches the locked buffer, even if other buffers are unlocked. If this condition

persists, an overflow can occur. See Section 10.6 for more information.

If write_lock_enabled is set to 0, buffers are overwritten as soon as new data is available, ignor-

ing the locking mechanism with UnlockP2pBuffers(). Generally, this mode is not recommended
unless there are well-understood reasons why UnlockP2pBuffers() cannot be used and that real-
time processing of buffers is guaranteed.

7. At the end of the main program loop, the application should determine if the acquisition should

continue. If so, the program flow restarts from step 3. If the acquisition is complete or should

stop for any other reason, the user is required to call StopDataAcquisition() to bring the data

acquisition (and data transfer) process to a well-defined halt. The return value ADQ_EINTERRUPTED
may be an expected error code if an acquisition is stopped prematurely.

8. Once the acquisition has been stopped, it is once again possible to modify the digitizer’s parameters

or to restart the acquisition with the same parameters by proceeding to step 2. If the application

should exit, proceed with the cleanup phase outlined in Section 15.7.

10.4.3 Record Data Transfer Buffer Format

Records are stored as samples in the record transfer buffers without any padding between records. See

Section 3 for details about the sample format.

10.4.4 Metadata Transfer Buffer Format

Metadata is stored in the format of an ADQGen4RecordHeader in the metadata transfer buffers. Certain

fields in the header requires post processing to be valid, this processing is not available when the data

transfer interface is used. See the documentation of the ADQGen4RecordHeader for details.

� Important

Certain fields in the header requires post processing to be valid, this processing is disabled when the

data transfer interface is used.

ADQ3 Series Digitizers — User Guide spdevices.com Page 112 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10.5 Data Readout

The data readout interface offers a low complexity, high flexibility method for making data available to

the user application at the expense of a slight increase in computational overhead. Unless the use case

involves advanced requirements on data throughput, it is recommended to begin developing the user

application using this interface since the overhead is seldom a problem in practice.

The data readout interface outputs complete records and abstracts away the data transfer process

and the transfer buffer handling. This reduces the complexity in the user application which can be written

in a more straight-forward manner, processing one record at a time. Additionally, this interface is thread-

safe, making it ideal to feed data to multi-threaded data processing applications. However, this interface

is only supported when data is transferred to the host computer’s RAM and requires that metadata is

transferred from the digitizer (metadata_enabled set to 1). See Fig. 42 for an overview.

� Important

The data readout interface is only supported when the transfer buffers are located in the host com-

puter’s RAM and requires that metadata is transferred from the digitizer.

10.5.1 Interface

The data readout interface consists of four main functions:

• StartDataAcquisition() and StopDataAcquisition() starts and stops the data acquisition, data
transfer and data readout processes;

• WaitForRecordBuffer() and ReturnRecordBuffer() allows access to a target channel.

Refer to Sections A.4.4 and A.4.6 for detailed descriptions of these functions.

10.5.2 Record Buffers

Once there is at least one transfer buffer filled with data, its contents are translated into record buffers

and passed on to the user application. These objects contains references to where the record data and
its associated metadata, i.e. its header is located. The memory format of a record buffer is specified

by the ADQGen4Record struct. The memory associated with a record buffer is owned by the API. Freeing
these regions from the user application may lead to segmentation faults.

� Important

The memory associated with a record buffer is owned by the API. Freeing these regions from the user

application may lead to segmentation faults.

� Note

By default, a record buffer always contains data from a full record. However, there is a mode which

is useful in some situations, where WaitForRecordBuffer() can return partial record data. Refer to
Section 10.5.7 for more information.

ADQ3 Series Digitizers — User Guide spdevices.com Page 113 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Dynamic Allocation

If the record length is dynamic (Section 9.1), or the digitizer is configured to continue on overflow (Sec-

tion 10.6.3), the data from one record may end up split over several transfer buffers. In the interest of

providing a low friction user experience by default, these events are hidden by copying data from the

transfer buffers to dynamically allocated memory on the heap; so that the assumption of a contiguous

data region hold true.
In a well-configured system, record data being copied from the transfer buffer only happens for a

minority of the record buffers received by the user application. In the majority of cases, a copy is not

required when the received record buffer can point directly to the transfer buffer memory (containing the

data of a complete record). Ultimately, the frequency with which this mechanism is triggered will depend

on the size of a record relative to the record_buffer_size.
The copy behavior is disabled when incomplete_records_enabled is set to 1, offloading the task

of stitching together incomplete data to form the complete record to the user application. Refer to Sec-

tion 10.5.7 for additional details.

Record buffers are allocated and resized as needed to handle the incoming data rate. However, the

memory consumption of this process is constrained for each channel by the parameters record_buffer_
size_max, record_buffer_size_increment and nof_record_buffers_max. Together they specify how
large a record buffer is allowed to grow, the size added in each reallocation and the maximum number

of buffers that may be allocated. By default, the process is unconstrained both in terms of the number

of buffers and their maximum size. The record buffer memory is freed when StopDataAcquisition() is
called.

10.5.3 Program Flowchart

The expected program flow for a user application reading data via the data readout interface is presented

in Fig. 44. The steps are labeled on the left-hand side and are explained in the following list.

� Note

The program flow in Fig. 44 is implemented in the software example data_readout. This example

code in C is available as part of the release archive. See Section 15.2 for details on how to locate this

example.

1. The starting point for the flow diagram is a configured digitizer. Its parameters are expected to

have been given values that reflect how the digitizer should to behave during the acquisition. The

general configuration process is outlined in Section 15.5. This section lists the parameter values

that activates the data readout process. How to set up other parts of the digitizer is documented

throughout the rest of this user guide.

• Set marker_mode to ADQ_MARKER_MODE_HOST_AUTO (default).

• Set write_lock_enabled to 1 (default).

• Set record_buffer_memory_owner to ADQ_MEMORY_OWNER_API (default).

• Set metadata_buffer_memory_owner to ADQ_MEMORY_OWNER_API (default).

• For each active channel:

ADQ3 Series Digitizers — User Guide spdevices.com Page 114 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

1 Configuration

Start data acquisition

StartDataAcquisition()

Wait for record buffer

WaitForRecordBuffer()

Return record buffer

ReturnRecordBuffer()

Stop data acquisition

StopDataAcquisition()

Return
value ADQ_EAGAIN 0

Process data
Zero length record

Y

Status event

N≤ 0

> 0

Timeout

Y

N

buffer

==

NULL

Y

N

Stop

Restart

YN

Cleanup
YN

2

3

4

5

6

7

8

Figure 44: A flowchart for the data readout process. The steps are labeled on the left-hand side and

have a matching entry in Section 10.5.3.

ADQ3 Series Digitizers — User Guide spdevices.com Page 115 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

– Set nof_buffers to a value in the range [2, ADQ_MAX_NOF_BUFFERS].

– Set metadata_enabled to 1 (default).

– Set infinite_record_length_enabled to 0 (default).

– If the acquisition is configured for records with static length:

* Set record_size to the expected size (in bytes) of a record.

* Decide the number of records per transfer buffer (positive integer). Let this value be N.

* Set record_buffer_size to N times the record size.

* Set metadata_buffer_size to N times the size of a record header (ADQGen4Record-
Header).

– If the acquisition is configured for records with dynamic length or continue_on_overflow_
enabled is set:

* Set record_size to 0.

* Set record_buffer_size to a suitable multiple of record_buffer_size_step.

* Set metadata_buffer_size to a suitable multiple of the size of a record header

(ADQGen4RecordHeader).

� Note

The paired record buffer and metadata buffer are both ejected as soon as one

of them reaches capacity. Consider the overhead caused by the metadata buffer

always filling up first. Metadata buffers are comparatively cheap in terms of memory.

• For each inactive channel:

– Set nof_buffers to 0 (default).

2. The data acquisition, data transfer and data readout processes are started simultaneously in a

well-defined manner when StartDataAcquisition() is called. If this call is successful, a thread

(Fig. 42) is created and the API assumes control of the digitizer. From this point, the user must not

call anyAPI functions other than thosemarked “� Thread-safe” inAppendix A until theAPI releases

the digitizer. Control is returned to the user if an error occurs or when StopDataAcquisition() is
called.

� Note

The digitizer’s parameters cannot be updated once the acquisition process is running.

3. The data readout loop begins by waiting for a record buffer by calling WaitForRecordBuffer().
This operation may target a specific channel or use the special value ADQ_ANY_CHANNEL to return
as soon as data is available on any of the active channels. The parameter timeout is used to

determine the behavior of the function call if data is not immediately available.

4. The function WaitForRecordBuffer() returns negative values to indicate an error and positive

values to indicate the number of bytes available in the record buffer’s data region. Apart from the

error code ADQ_EAGAIN which indicates a timeout, the negative values imply that an unrecoverable
error has occurred and that the acquisition has been aborted. In this case, the user is expected

to call StopDataAcquisition(). If the return value is zero, the function returned either a zero

ADQ3 Series Digitizers — User Guide spdevices.com Page 116 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

length record (Sections 9.5.1, 10.5.5) or a status event (Section 10.5.4). Use the value of buffer
to differentiate between the two cases.

5. The data processing step is the main purpose of a software application written for a digitizer.

Whether it involves writing the data to disk to analyze at a later time, or performing real-time anal-

ysis, this user guide cannot offer information on implementation details since the requirements are

highly application specific. However, a general guideline is not to perform computation-heavy oper-

ations in the loop (steps 3 to 7). This affects the balancing of the interface and can lead to overflows

(Section 10.6).

6. ReturnRecordBuffer() is called to make a record buffer available to receive new data. Once a

reference to a record buffer has been registered with the API, modification of its contents may

happen at any time. If the interface is consuming record buffers faster than the user can return

them, the channel is said to be starving. If this condition persists, an overflow can occur. See

Section 10.6 for more information.

7. At the end of the main program loop, the application should determine if the acquisition should

continue. If so, the program flow restarts from step 3. If the acquisition is complete or should

stop for any other reason, the user is required to call StopDataAcquisition() to bring the data

acquisition (and data transfer) process to a well-defined halt. The return value ADQ_EINTERRUPTED
may be an expected error code if an acquisition is stopped prematurely.

� Important

When StopDataAcquisition() returns, any memory owned by the API is returned to the oper-
ating system. Attempting to access record buffers after this point may lead to access violations.

8. Once the acquisition has been stopped, it is once again possible to modify the digitizer’s parameters

or to restart the acquisition with the same parameters by proceeding to step 2. If the application

should exit, proceed with the cleanup phase outlined in Section 15.7.

10.5.4 Status Events

Sometimes there is a need for the API to notify the user about certain events without propagating record

data, e.g. signaling that data has been discarded due to an overflow (see Section 10.6). Status events

are used for this purpose and are passed to the user application in the same way as record buffers—via

WaitForRecordBuffer(). They may be recognized by the function returning the value 0 and the buffer
being set to NULL. In such a situation, only the parameter status is valid and holds the event information.
Receiving a status event from WaitForRecordBuffer() should not be matched by a symmetric call to

ReturnRecordBuffer() since there is nothing to return.

10.5.5 Zero Length Records

Section 9.5.1 describes how the data acquisition process can be configured to emit records with no data

as a form of real-time status event.

ADQ3 Series Digitizers — User Guide spdevices.com Page 117 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Receiving a zero length record from a call to WaitForRecordBuffer() will be characterized by the

return value 0, the same as for status events. However, in the case of zero length records, buffer will
point to valid memory and the status flags will signal ADQ_DATA_READOUT_STATUS_FLAGS_OK.

� Important

Zero length records and status events can be separated by examining the value of the status flags
(ADQ_DATA_READOUT_STATUS_FLAGS_OK for zero length records), or the value of buffer (NULL for status
events).

10.5.6 Discarded Records

If a record cannot be transferred in its entirety to the user application, it is discarded with the rationale that

the user would have done the same upon realizing this fact. In its place, a status event (Section 10.5.4) is

emitted signaling ADQ_DATA_READOUT_STATUS_FLAGS_DISCARDED in the status flags of WaitForRecord-
Buffer().

Records are discarded as the result of an overflow caused by a data rate imbalance in the device-

to-host interface (Section 10.6), or by a dynamically allocated record buffer (Section 10.5.2) reaching its

maximum capacity, as defined by record_buffer_size_max.
If this behavior is undesired, the data readout interface can be configured to emit partial record data

in the form of incomplete records. See Section 10.5.7 for additional details. However, in the case of

a persisting overflow condition, any number of records may be discarded in their entirety. This data

cannot be recovered and such gaps in the acquisition sequence will also be signaled via the status event

described above. The record_number of the record immediately following this event will increment by

more than one with respect to the last record received from that channel.

10.5.7 Incomplete Records

The default behavior of the data readout interface is to return complete records, i.e. one record buffer

(ADQGen4Record) holds exactly the data associated with one acquired record. This is to maintain low

friction between the mental model of the data acquisition process and the user application. However,

there are situations where this behavior becomes undesired or even impractical. For example, there

are obvious issues with memory allocation if the record length is infinite (record_length is set to ADQ_
INFINITE_RECORD_LENGTH). Another example is if the copy mechanism described in Section 10.5.2 is

suspected to limit performance or should be disabled for other reasons.

The parameter incomplete_records_enabled controls whether or not WaitForRecordBuffer() is

allowed to return partial data on success and is zero (disabled) by default. Whether a record is incomplete

or complete is communicated via a flag in the parameter status for each successful call to the function.
Additionally, record headers will propagate to the user application together with the record buffer that

contains the last partial data. In the case of a record with infinite length, no metadata is transferred.

� Note

The mechanism to propagate partial record data increases the flexibility of the data readout interface,

at the cost of increased complexity in the logic of the user application. It is only recommended if

required by the use case.

ADQ3 Series Digitizers — User Guide spdevices.com Page 118 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Note

In the case of a record with infinite length, no metadata is transferred.

Modifications to the Program Flowchart

The expected program flow for a user application reading incomplete record data via the data readout

interface is essentially identical to the steps described in Section 10.5.3. The only differences are in

steps 1 and 5: configuration and data processing. The entries in the list below are intended to supersede

the corresponding entries in the list in Section 10.5.3. Step 1a describes the configuration for records

with finite length and step 1b describes the configuration for records with infinite length.

1. (a) Start from the configuration outlined in step 1 (Section 10.5.3) for records with dynamic length

and make the following adjustments:

• Set incomplete_records_enabled to 1.

• Set nof_record_buffers_max to 0.

(b) Start from the configuration outlined in step 1 (Section 10.5.3) for records with dynamic length

and make the following adjustments:

• Set infinite_record_length_enabled to 1.

• Set metadata_enabled to 0.

• Set metadata_buffer_size to 0.

• Set incomplete_records_enabled to 1.

• Set nof_record_buffers_max to 0.

5. The data processing step increases in complexity since the user application also needs logic to

decide how to handle partial data, in addition to the logic performing the use case specific process-

ing. As in the case of complete records, this user guide cannot offer information on implementation

details since the requirements varies with the use case. However, there are essentially two strate-

gies:

• process the partial data immediately; or

• stitch together the complete record by copying the partial data until the last record buffer is

emitted, then proceed with the processing step.

The latter is only applicable for finite records (step 1b). Regardless of the chosen strategy, the

user application should query the status parameter propagated next to the record buffer in the

call to WaitForRecordBuffer() for information about the record buffer. The member flags is

a bitmask that will signal ADQ_DATA_READOUT_STATUS_FLAGS_INCOMPLETE when the emitted record
buffer contains partial data. The corresponding flag bit is set to zero for the last batch of partial data

that completes the record. The return value of WaitForRecordBuffer() indicates the payload, i.e.
the amount of partial data available for reading.

10.5.8 Optimizing Throughput

While the data readout interface offers an intuitive view of the data stream where one event corresponds

to one record, this view has one weakness in practice: high event rates. Since the channels are made

ADQ3 Series Digitizers — User Guide spdevices.com Page 119 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

thread safe by the API, there is a certain overhead associated with processing and dispatching record

buffers to the user application (Fig. 42). In practice, that means that each host system has a point

where trigger rate starts to negatively affect the effective bandwidth. Precisely where this drop-off point

is located depends on the host system’s specification. Generally, shorter records allow higher trigger

rates. Running at rates at or above 100 kHz can impact the performance of this interface in its default

configuration.

To tackle this issue, the concept of arrayed record buffers is introduced. In this mode (which is

disabled by default), each successful call to WaitForRecordBuffer() emits an array object holding one
or several record buffers: ADQGen4RecordArray. Since multiple records buffers are emitted together, this
reduces the activity of the thread safe data readout interface while still propagating the same amount of

record data.

This mechanism is controlled by the data readout parameter nof_record_buffers_in_array. When

the parameter is set to a positive value, arrays containing the specified number of records are emitted

by WaitForRecordBuffer(). The only allowed negative value is the special value ADQ_FOLLOW_RECORD_
TRANSFER_BUFFER which indicates that the contents of the emitted array should exactly represent the

contents of a record transfer buffer. Setting the parameter to zero (the default value) disables the array

mechanism, causing WaitForRecordBuffer() to emit ADQGen4Record objects.

� Note

Shorter records allow higher trigger rates. User applications running at rates at or above 100 kHz may

need to utilize arrayed record buffers to stay performant in these situations.

10.6 Overflow

� Important

By default, the data acquisition stops in the event of an overflow unless

• the user has activated the continue on overflow mechanism, described in Section 10.6.3; or

• the digitizer is running the FWATD firmware, in which case the overflow behavior differs signifi-

cantly from how it is described in this section. See Section 5.6.6 for more information.

An overflow in this context means the result of a data rate imbalance where data is forced to be discarded.

There are two possible causes, either

1. the data rate of the acquisition process exceeds the bandwidth of the physical interface; or

2. the transfer buffers are not being made available for new data at a sufficient rate.

Sections 10.6.1 and 10.6.2 describes the two cases in more detail. Section 10.6.3 describes how the

digitizer can be made to continue its data acquisition process in the event of an overflow and what that

means for the data transfer process and the user application. Refer to GetStatus() for information on
how to query the digitizer for the overflow status.

ADQ3 Series Digitizers — User Guide spdevices.com Page 120 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10.6.1 Physical Interface (case 1)

ADQ3 series digitizers are equipped with on-board memory whose purpose is to act as a buffer for the

physical interface. This buffer is required since the physical interface may experience temporary stalls

at any time, leaving the digitizer with two options: discard the data, or store and transfer it at a later

time. The latter option is chosen as long as the memory is not filled to capacity, but if the imbalance

continues for an extended period of time, discarding data will be the only option. If an overflow occurs,

the acquisition process will either come to a halt or continue to the best of its ability (see Section 10.6.3).

In both cases, the contents of the on-board memory at the time of the overflow remain intact and can

be transferred safely. Refer to GetStatus() for information on how to query the digitizer for the overflow

status.

10.6.2 Transfer Interface (case 2)

The other critical point is when the transferred data is propagated to the user application via one of the

two available interfaces:

1. either WaitForRecordBuffer() and ReturnRecordBuffer(); or

2. WaitForP2pBuffers() and UnlockP2pBuffers().

Regardless of interface, the user is expected to perform symmetrical operations. For every transfer buffer

given to the user application via WaitForP2pBuffers(), a corresponding call to UnlockP2pBuffers() to
unlock it is expected. For every record buffer propagated via WaitForRecordBuffer(), a corresponding
call to ReturnRecordBuffer() returning the record buffer is expected. Note that a call to WaitForRecord-
Buffer() is not guaranteed to emit a record buffer. Errors and status events are the exception to this

rule. See step 4 in the program flow chart in Fig. 44 Section 10.5.3 for additional details.

If the user application fails return memory to theAPI at a sufficient rate, the digitizer will have nowhere

to transfer new data. This stops the data transfer process and causes the digitizer’s on-board memory

to start filling up and potentially trigger the overflow behavior described in Section 10.6.1. When this

happens, the interface is said to be starving. It is worth repeating that no data is lost until the digitizer’s

on-board buffer memory overflows. Data waiting to be transferred remains intact when the data transfer

process suspends its operations.

To avoid starving the interface, the user first needs to ensure that any processing step (Section 10.4.2,

step 5 and Section 10.5.3, step 5) is able to handle the sustained acquisition data rate. For example,

acquiring data at an average rate of 2 GB/s and writing this to a solid-state drive (SSD) with an average

write speed of 500 MB/s is not sustainable. Second, assuming the processing step is capable of handling

the target data rate, the user will need to balance the transfer buffer sizes. Each use case will have its

own optimal transfer buffer size, meaning this parameter must be tuned by the user. In general, the

trade-off is between latency (smaller buffers) and throughput (larger buffers).

� Note

To avoid starving the interface, the user needs to make sure that the processing step (Section 10.4.2,

step 5 and Section 10.5.3, step 5) is able to handle the acquisition data rate.

ADQ3 Series Digitizers — User Guide spdevices.com Page 121 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10.6.3 Continue on Overflow

By default, the data acquisition halts when an overflow is detected. This behavior can be changed via

the parameter continue_on_overflow_enabled. When activated, the digitizer will continue to acquire

and transfer records in the event of an overflow. However, this behavior will result in some records

being lost entirely and some records being abruptly cut short, rendering them incomplete with no way

of recovering the data that was lost. This effectively creates a situation where the length of a record

that does get transferred under these conditions is dynamic but determined by events outside the user’s

control, as opposed to events defined by the data acquisition process (Section 9.1). Since the resulting

data flow behaves in the same way for both cases, the data transfer process must be configured to sup-

port transferring records with dynamic length if continue_on_overflow_enabled is set. The necessary
configuration is outlined in step 1 in Section 10.5.3.

By default, records with incomplete data are discarded by the data readout interface (Section 10.5.6).

To change this behavior, incomplete records must be allowed to propagate through the interface. Refer

to Section 10.5.7 for more information. A record where data definitely has been lost will signal ADQ_
RECORD_STATUS_LOST_DATA in the header field record_status. Moreover, when one or several entire

records are lost, a gap in the record_number sequence is also expected. The first record following such
a gap will always be preceded by the status event described in Section 10.5.6.

� Note

The digitizer cannot be configured to continue on overflow if the record_length is set to ADQ_
INFINITE_RECORD_LENGTH.

Hysteresis

If the acquisition rate is such that the on-board memory exists in a constant state of overflow, and

continue_on_overflow_enabled is set, the overflow_hysteresismay need adjustment to ensure that
some records still propagate in their entirety.The hysteresis is given as a percentage of the dram_size
and represents an offset from the maximum capacity. Following an overflow, no new data is written to

the on-board memory until it has been emptied by at least this amount. If at least one complete record

fits within this margin, the user application will eventually receive a complete record—regardless of any

perpetual overflow condition.

� Example

Consider a dram_size of 8 GiB and an overflow_hysteresis of 3%. Following an overflow, no new

data will be written to the on-board memory until

dram_size · overflow_hysteresis = 8 · 10243 · 0.03 = 245.76 MiB

has been made available.

The overflow_hysteresis is subjected to rounding and not intended to be controlled with high precision.
The value read in a call to GetParameters() may be different from the requested hysteresis but reflects

the one used by the digitizer.

ADQ3 Series Digitizers — User Guide spdevices.com Page 122 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10.7 Eject

A partially filled transfer buffer (Section 10.1) can be made available to the user application by ejecting

it. Normally, a transfer buffer becomes available to the user when filled to capacity. Transfer buffers may

be ejected in a variety of ways, namely:

• by a software request,

• when a timeout is reached,

• at the end of a record; or

• when the signal output from one of the pattern generators (Section 7.1) is logic high.

The eject mechanism is controlled by the data transfer parameters eject_buffer_source and eject_
buffer_timeout.

� Note

The transfer buffer will only be ejected if it is partially filled with data. Ejecting an empty transfer buffer

has no effect.

� Important

Frivolously ejecting the transfer buffers may reduce the maximum throughput.

Software request

A partially filled transfer buffer is ejected via a software request by calling EjectTransfer-
Buffer(). The timing of the function call relative to data or external input is not guaranteed. This
function is only intended to be used in specific cases, generally to eject the last buffer of an ac-

quisition. This eject source is always enabled, regardless of the value of eject_buffer_source.

Timeout

The timeout is enabled by setting the eject_buffer_timeout to a positive value. A partially filled
transfer buffer will be ejected when no data has been written for the specified amount of time. The

timeout is cleared by each record, meaning that there is a trigger frequency for which eject events

of this type will not be triggered. This mode of operation should not be confused with ejecting

transfer buffers periodically. If this is desired, use one of the pattern generators to create a peri-

odic signal and set eject_buffer_source to target one of them, e.g. ADQ_FUNCTION_PATTERN_
GENERATOR0.

Record stop

A partially filled transfer buffer is ejected after each record. For records with static length, this

should normally not be used since the same effect can be achieved by setting the record_buffer_
size to match the record length. To activate this behavior, set eject_buffer_source to ADQ_
FUNCTION_RECORD_STOP.

ADQ3 Series Digitizers — User Guide spdevices.com Page 123 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Pattern generator

The pattern generator may be used to generate an arbitrary signal from external input or timers to

eject the buffer. A partially filled transfer buffer is ejected when the pattern output_value is logic
high. To activate this behavior, set eject_buffer_source to the desired pattern generator, e.g.

ADQ_FUNCTION_PATTERN_GENERATOR0.

ADQ3 Series Digitizers — User Guide spdevices.com Page 124 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

10.8 Compression

The default size of a sample is determined by the active firmware, with the FWATD firmware producing

32-bit samples and all others producing 16-bit samples. This default size is given (in bytes) by the

constant parameter nof_bytes_per_sample.
The digitizer can optionally compress the size of a sample to a smaller value through a lossy com-

pression mechanism, meaning that information is sacrificed to reduce the bandwidth requirements of

a target acquisition configuration. This trade-off may be worthwhile if the increased quantization noise

resulting from this operation does not significantly impact the use case.

Compression is disabled by default and controlled via the data acquisition parameters nof_bits_
per_sample and compression_gain. The parameter nof_bits_per_sample controls the effective size

of a sample and its valid range depends on the current firmware. In general, a sample cannot be com-

pressed further than 8 bits and cannot grow beyond its default size (which sets the upper bound). A

compression_gain factor may be applied to scale the sample value before it is truncated (with satura-

tion) to the specified nof_bits_per_sample. In this way, an arbitrary vertical range can be extracted with
flexible precision. Fig. 45 shows this procedure for a 16-bit sample compressed to 10 bits by sacrificing

nof_bits_per_sample = 10

8·nof_bytes_per_sample = 16

15

compression_gain = 2-6

Compressed sample 15

0

15

6

6

6

Figure 45: Visualization of the compression mechanism when a 16-bit sample is compressed to 10 bits.

the six least significant bits. The compression_gain is set to 2−6, meaning that the scaling operation

results in a straight-forward arithmetic right shift. The scaled sample is truncated to nof_bits_per_
sample by removing most significant bits. Since the most significant bit of the uncompressed sample is
also the most significant bit after truncation in this example, no information will be lost due to saturation.

Saturation happens if the scaled value does not reside in the range[
−2nof_bits_per_sample−1,2nof_bits_per_sample−1 − 1

]
, (26)

in which case the compressed value is clamped to the nearest endpoint and the overrange bit in record_
status is set (defined by ADQ_RECORD_STATUS_OVERRANGE).

ADQ3 Series Digitizers — User Guide spdevices.com Page 125 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Since the data transfer process transfers each record as a whole number of bytes, there will potentially

be some overhead associated with each record that depends on its length. The total size (in bytes) of a

record can be calculated as ⌈
nof_bits_per_sample · record_length

8

⌉
(27)

where there is some overhead as soon as the division does not produce an integer result.

Interpreting the record data is always the user’s responsibility. When compression is active, the

header field data_format will be set to a value in the range 8–32 to indicate the size of a sample in

bits, and the header field record_length will (as always) reflect the number of samples contained in

the data region. When using the data transfer interface instead of the data readout interface, e.g. if

transferring compressed data to a GPU, the data_format will not be set. The configuration parameter
nof_bits_per_sample can be used in its place.

� Note

If compression is not relevant for a particular use case, it is recommended to use the constant param-

eter nof_bytes_per_sample for size calculations instead of the expression nof_bits_per_sample/8
to reduce complexity and to make the user application less verbose.

� Example

Consider an ADQ35 running its one-channel FWDAQ firmware at the base sampling rate of 10 GSPS.

The bandwidth needed to continuously transfer the 16-bit data from an acquisition with approximately

100% duty cycle is

10 · 109 · 16
8

= 20 GB / s,

which exceeds the highest available bandwidth when the digitizer is connected to the host computer

via a PCIe Gen3x16 interface. With an available bandwidth of 14 GB/s, compressing the data to (at

least)

16 · 14 · 109

20 · 109
= 11.2 bits ⇒ /nof_bits_per_sample even number/ ⇒ 10 bits

would result in a manageable data rate that also preserves up to 10 bits of the dynamic range (de-

pending on the compression_gain).

10.8.1 Amended Code to Voltage Conversion

Since the compression mechanism affects the range of a sample, the expressions used to convert a

sample to its corresponding voltage in (1) and (4) need to be amended (if compression is enabled) to

xmillivolts =
xcodes · input_range

code_normalization · compression_gain
− dc_offset, (28)

and

xmillivolts =
xcodes · input_range

code_normalization · firmware_specific · compression_gain
− dc_offset, (29)

ADQ3 Series Digitizers — User Guide spdevices.com Page 126 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

respectively. These expressions are always valid since compression_gainwill be set to 1 if compression
is disabled.

10.9 Calculating the Data Rate

To calculate the effective data rate of one channel, use the relation presented in (30). The calculation

assumes no metadata, a trigger rate of ftrigger and that the trigger period is greater than the record length,

i.e. that records do not overlap.⌈
nof_bits_per_sample · record_length

8

⌉
· ftrigger [bytes / s] (30)

If metadata is enabled (metadata_enabled is a nonzero value), each trigger also adds the transfer of an
ADQGen4RecordHeader. Thus, (30) becomes(⌈

nof_bits_per_sample · record_length
8

⌉
+ sizeof(ADQGen4RecordHeader)

)
· ftrigger [bytes / s]

(31)

To calculate the total data rate, sum the contributions from each active channel.

� Example

An ADQ32 with 16 bits per sample and a base sampling rate of 2500 MSPS is configured to acquire

data on both channelAand channel B. ChannelA is set up to acquire a record with 2000 samples every

rising edge detected on the TRIG port. The periodic signal input on the TRIG port has a frequency of

100 kHz. Metadata is active. Using (31), the data rate can be calculated as(⌈
16 · 2000

8

⌉
+ 64

)
· 100 · 103 = 406400 · 103 = 406.4 MB/s.

Channel B is set up to acquire a record with 100000 samples every rising edge detected on the SYNC

port. The periodic signal input on the SYNC port has a frequency of 2 kHz. Metadata is not active.

Using (30), the data rate can be calculated as⌈
16 · 100000

8

⌉
· 2 · 103 = 400000 · 103 = 400.0 MB/s.

Thus, the total sustained data rate is

406.4 · 106 + 400.0 · 106 = 806.4 MB/s.

Some firmware types are specifically aimed at reducing the amount of data transferred over the device-

to-host interface without sacrificing acquisition rate. For example, the FWATD firmware (Section 5.6)

features hardware accelerated accumulation of records. This allows higher acquisition rates than what

can be supported by the physical interface by virtue of the accumulator significantly reducing the amount

of data transferred between the digitizer and the endpoint. Such aspects affect the calculations presented

in (30) and (31) which then becomes worst-case values.

ADQ3 Series Digitizers — User Guide spdevices.com Page 127 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

11 Test Pattern

The digitizer has a built-in test pattern generator which replaces the digitized data from the ADC with a

digitally generated sequence of values. This can be useful for debugging purposes. The test pattern is

disabled by default, but can activated on a per-channel basis by specifying an appropriate value for the

test pattern source parameter. The following sources are available:

ADQ_TEST_PATTERN_SOURCE_COUNT_UP

A sawtooth pattern which counts upwards from −32768 to 32767, with each sample incrementing
in value by 1.

ADQ_TEST_PATTERN_SOURCE_COUNT_DOWN

A sawtooth pattern which counts downwards from 32767 to −32768, with each sample decre-

menting in value by 1.

ADQ_TEST_PATTERN_SOURCE_TRIANGLE

A triangle pattern which first counts upwards from −32768 to 32767, followed by a downward

count from 32767 to −32768. At the boundary between counting upwards and downwards, the

sample value (32767 and −32768) will be repeated twice.

� Note

The test pattern is not affected by the digital gain and offset signal processing step described in Sec-

tion 5.1.

ADQ3 Series Digitizers — User Guide spdevices.com Page 128 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

12 System Manager

The system manager is a dedicated hardware component responsible for the digitizer’s firmware man-

agement, temperature monitoring, supply voltage monitoring, overtemperature protection and fan control

(where applicable). The system manager has two communication interfaces:

• an interface integrated into the digitizer’s device-to-host interface, e.g. the PCIe interface.

• a dedicated USB interface located at the edge of the digitizer. The interface connector is not

accessible via the front panel and its format differs between digitizer models:

– ADQ30-PCIe, ADQ32-PCIe and ADQ33-PCIe are fitted with either an USB-C connector or a

micro USB connector, depending on the date of production.

– ADQ35-PCIe is fitted with a USB-C connector.

– ADQ36-PXIe is fitted with a micro USB connector.

The dedicated USB interface acts as the fallback interface if the digitizer should ever be put in a state

where the main device-to-host interface is unavailable. While rare, this can happen for various reasons,

as described in the following sections.

12.1 Firmware

The digitizer’s firmware memory can store several firmware images. To manage these, the software tools

ADQUpdater or ADQAssist are used. Refer to the ADQUpdater user guide [5] for more information.

If the digitizer firmware has somehow been compromised and communication via the device-to-host

interface is not possible, a fallback option is provided via the dedicated USB connector (described in

Section 12).

12.1.1 Channel Configuration

Some ADQ3 series digitizers support several channel configurations on the same hardware. This af-

fects the number of channels and their base sampling rate. For example, ADQ32 can either run as a

two-channel digitizer with a base sampling rate of 2.5 GSPS, or as a one-channel digitizer with a base

sampling rate of 5 GSPS. This is controlled via the active firmware image. Below is a typical output from

listing the available firmware images in ADQUpdater. Two images are listed: a two-channel 2.5 GSPS

version as image 0, and a one-channel 5 GSPS version as image 1.

ADQ3 Series Digitizers — User Guide spdevices.com Page 129 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Image 0 (default) (current)

Size: 13 MB (13585656 B)
Revision: 2023.2

Description: 2CH-FWDAQ-PCIE
Part number: 400-023-000

MD5: 1A7BB25D794534072B72A32262D1F57E
Address: 0x02000000

Timestamp: 2023-06-30T07:55:04Z

Image 1

Size: 13 MB (13429412 B)
Revision: 2023.2

Description: 1CH-FWDAQ-PCIE
Part number: 400-023-001

MD5: FF319E56988132CF9BDF55FCC803EACA
Address: 0x01000000

Timestamp: 2023-06-30T07:59:18Z

Changing the channel configuration involves specifying the desired firmware image as the new default

image and then power cycling the device. In general, this also includes the host system since the device-

to-host interface has to be renegotiated.

� Important

Changing the channel configuration requires that the device is power cycled. In general, this also

includes the host system since the device-to-host interface has to be renegotiated.

12.2 License Management

Certain features of the digitizer are locked behind licenses. These are stored in the on-board nonvolatile

memory. By default, the FWDAQ firmware license is enabled on all digitizers. Other firmware licenses,

such as the one required to run the FWATD firmware, constitute an add-on purchase for each digitizer

and are not enabled by default.

If an add-on firmware license was purchased at the same time as the digitizer hardware, the license

will already be enabled on the unit when it is shipped and no action needs to be taken by the user. If

the firmware license is instead purchased for a unit in the field, a field update of the license must be

performed. This is done using the ADQLicenseUtil software tool.

To start, the unit-specific DNA identifier should be read out:

> adqlicenseutil --read-dna

Unit 1 (ADQ32) - Serial: SPD-01234, DNA: 000000004002000123456789ABCDEF000

The output from this command can then be sent to your sales representative and a license file with the

new license added will be generated. This file will be unique to the digitizer from which the DNA identifier

was read, and will not work for other digitizers. To write the new license file to the unit, execute the

following command:

ADQ3 Series Digitizers — User Guide spdevices.com Page 130 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

> adqlicenseutil --write-license SPD-01234_FWDAQ_FWATD_14-Dec-2022.lic

The user can query the status of the digitizer’s license situation, with respect to the active firmware, by

calling GetStatus() with ADQ_STATUS_ID_LICENSE as the target identifier.

12.3 Temperature Monitoring

The systemmanager continually monitors the operating temperatures of components in the digitizer hard-

ware such as the FPGA, ADCs and voltage converters. Each temperature sensor has a set limit, which

once exceeded, will cause the system manager to trigger the overtemperature protection mechanism.

See Section 12.3.2 for more information.

The user can query the API for the current values of the digitizer’s temperature sensors by calling

GetStatus() with ADQ_STATUS_ID_TEMPERATURE as the target identifier. The values are organized into

an array of sensor entries in ADQTemperatureStatus.

12.3.1 Overtemperature Margin

In addition to the current value of the temperature sensor, the distance to the point at which the re-

coverable overtemperature fault is triggered is reported as the overtemperature_margin. With this

information, a user may implement their own overtemperature protection mechanism on top of the one

built in to the digitizer.

Not all temperature sensors are monitored. The overtemperature_margin for an unmonitored sen-

sor will be set to positive infinity (according to IEEE-754) such that

overtemperature_margin > 0

will always hold true.

ADQ3 Series Digitizers — User Guide spdevices.com Page 131 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Example

Consider a system where the digitizer is installed in an enclosed space and where the environment’s

airflow is controlled by the same application controlling the digitizer. If the digitizer is nearing its

overtemperature limit, e.g. within 10◦C, the system’s airflow should increase in an attempt to pro-

vide a cooler environment.

This can be implemented by polling the temperature status via GetStatus() in the following man-
ner:

/* Acquisition loop, data acquisition calls omitted as ”...” */
while (!done)
{
/* ... */
if (check_temperature)
{
struct ADQTemperatureStatus status;
int result = ADQ_GetStatus(ADQ_STATUS_ID_TEMPERATURE, &status);
if (result == sizeof(status))
{
for (int i = 0; i < status.nof_sensors; ++i)
{
if (status.sensor[i].overtemperature_margin < 10)
/* Increase system airflow. */

}
}
else
{
/* Handle error */

}

check_temperature = false;
}

}

The frequency at which the temperature sensors are polled can affect the data throughput, with more

frequent polling reducing the throughput. As temperature is a comparatively slow moving physical

quantity, polling once every few seconds is enough to have time to react to rising temperatures.

Note that the pseudocode above is only an example. Some applications may already have mech-

anisms in place for system monitoring. In such cases, calling GetStatus() in the data acquisition loop
may not be optimal. The location of any user monitoring is flexible due to the thread safe properties of

GetStatus().

12.3.2 Overtemperature Protection

The overtemperature protection mechanism can trigger two types of faults:

1. a recoverable overtemperature fault; and

2. an unrecoverable overtemperature fault.

Both faults are signaled via the STAT LED (see Section 13.1), where the unrecoverable overtemperature

ADQ3 Series Digitizers — User Guide spdevices.com Page 132 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

fault takes priority if both are asserted. The combined fault state is also available when querying the

digitizer’s temperature status via GetStatus(). If any of the faults are asserted, overtemperature_
fault will be set to a nonzero value. Note that the protection mechanism triggered by an unrecoverable

temperature fault may result GetStatus() returning an error. It is also possible to list the current status
of the digitizer via ADQUpdater.

Recoverable Overtemperature Fault

If the recoverable overtemperature fault is triggered, the system manager attempts to reduce the tem-

perature by reducing the dynamic power consumption. The ADCs are switched off and the clock system

is disabled, immediately halting the flow of data. In this state, it is still possible to communicate with

the digitizer over the device-to-host interface. However, any ongoing acquisition will be aborted and the

digitizer will not be able to be reinitialized until the fault is cleared. Recovering from this fault requires

manual intervention, signaling that the fault is acknowledged by the user and that an attempt should be

made to power up the ADCs and the clock system. The fault is cleared by either

• setting up the device by calling ADQControlUnit_SetupDevice(); or

• issuing a soft reset of the system manager via ADQUpdater.

If the fault is cleared but the factors causing the high operating temperature remain, the system manager

will trigger the fault once again.

Unrecoverable Overtemperature Fault

Should the actions taken by the recoverable overtemperature fault not be sufficient to reduce the dig-

itizer’s operating temperature, the unrecoverable overtemperature fault will be triggered. In this state,

core supply voltages are disabled to avoid damaging system components. This means that the device-

to-host interface will forcefully close, which can result in a freeze of the host system depending on the

interface activity at the time of the fault. Once this fault is triggered, the digitizer will not be able to operate

properly until it has been completely power cycled. Communicating with the system manager will only

be possible via the dedicated USB port.

� Important

Once the unrecoverable overtemperature fault is triggered, the device-to-host interface will forcefully

close. This may result in a freeze of the host system depending on the interface activity at the time of

the fault.

The total number of unrecoverable overtemperature faults observed in the lifetime of the digitizer is

stored in nonvolatile memory and readable as the value of the status parameter nof_unrecoverable_
overtemperature_faults.

ADQ3 Series Digitizers — User Guide spdevices.com Page 133 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

12.4 Fan Control

� Release 2024.1

Fan control is supported starting from release 2024.1 and requiresmatching systemmanager firmware.

Digitizers with an older system manager firmware will not allow manual fan control.

ADQ3 series digitizers are air cooled, and all models except ADQ36 (which is cooled by the air flow in

a PXIe chassis) have an integrated fan for this purpose. The fan speed is regulated automatically, with

higher speeds for higher on-board temperatures.

It is possible for the user to override the automatic fan speed regulation via the ADQSystemManager-
Parameters. This parameter set is not part of the top level tree (ADQParameters) and must be handled
separately by the user. This enforces the recommendation that explicit fan control should be avoided

in general. The automatic fan speed regulation is designed to keep the digitizer within its temperature

tolerances for the operating conditions listed in the datasheet [1] [2] [3] [4] without user intervention.

� Important

Explicitly controlling the fan speed should be avoided in general.

To manually set the fan speed, the fan_mode must be set to ADQ_FAN_MODE_CONSTANT and the desired
fan_speed set as a percentage of the maximum speed. Note that there is a lower bound to the fan speed

below which the fan stops and values between zero and this bound will have no effect. This lower bound

can differ between models, i.e. ADQ32 may have a different lower bound than ADQ35.

When the digitizer is power cycled, the automatic fan speed regulator is restored once again. To revert

to the automatic fan speed regulator while the digitizer is running, set fan_mode to ADQ_FAN_MODE_AUTO.

� Important

If the overtemperature protection mechanism (Section 12.3.2) is triggered, the fan speed will automat-

ically be set to 100% and any attempt to change it will return an error.

ADQ3 Series Digitizers — User Guide spdevices.com Page 134 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

12.4.1 Example

The code snippet below demonstrates how to set a constant fan speed from a user application.

/* Initialize the system manager parameters. */
struct ADQSystemManagerParameters system_manager;
int result = ADQ_InitializeParameters(adq_cu, adq_num,

ADQ_PARAMETER_ID_SYSTEM_MANAGER,
&system_manager);

if (result != sizeof(system_manager))
{
/* Handle error */

}

/* Enable manual fan speed control and set the speed to 70% of the maximum. */
system_manager.fan_mode = ADQ_FAN_MODE_CONSTANT;
system_manager.fan_speed = 70;

result = ADQ_SetParameters(adq_cu, adq_num, &system_manager);
if (result != sizeof(system_manager))
{
/* Handle error */

}

ADQ3 Series Digitizers — User Guide spdevices.com Page 135 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

13 Front Panel LEDs

This section describes the function of the digitizer’s front panel LEDs.

13.1 STAT

The LED labeled “STAT” is a multipurpose LED indicator controlled by the system manager (Section 12).

It is used to signal various status information about the digitizer. During normal operation, the LED is

constantly lit green, indicating that there are no issues. If the LED is not green, Table 11 can be used to

determine the meaning. If multiple errors occur at the same time, the LED will signal the one with highest

priority. Additionally, the user can call Blink() to initiate a five second 1 Hz blue blinking pattern. This is
useful when operating multiple digitizers.

Table 11: The states of the STAT LED, sorted in descending priority.

LED state Description

Blinking red, 5 Hz The unrecoverable overtemperature fault has been

triggered. See Section 12.3.2 for more information.

Blinking orange, 5 Hz The recoverable overtemperature fault has been trig-

gered. See Section 12.3.2 for more information.

Blinking red, alternating long/short Waiting for power supplies to start up.

Constant purple Communication with the digitizer’s firmware memory

cannot be established.

Blinking purple, 1 Hz A sensor reading has failed.

Blinking yellow, 1 Hz Failed to load the digitizer’s firmware.

Alternating red/yellow, 2 Hz No valid digitizer firmware found.

Constant green Normal operation.

� Note

ADQUpdater can be used to query the digitizer for the current status. Refer to the ADQUpdater user

guide [5] for more information.

13.2 RDY

The LED labeled “RDY” is an activity indicator for the data acquisition process. When the LED is lit yellow,

the data acquisition process (for at least one channel) is waiting for a trigger event to be observed. When

a trigger event is detected, the LED is turned off briefly. The rate of the blinking is limited to 10 Hz, even

if the trigger rate is higher.

13.3 USER

The LED labeled “USER” is controlled via the FPGA development kit. The default behavior for the LED

is to always be off.

ADQ3 Series Digitizers — User Guide spdevices.com Page 136 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

14 EEPROM

EachADQ3 series digitizer is fitted with a nonvolatile memory to store calibration data as well as informa-

tion used for device identification. This data is protected and cannot be modified by the user. However,

there’s a dedicated user area where the user is free to store data in a persistent manner. The size of the

area is defined by the constant parameter eeprom_user_area_size.

EEPROM

USER

ADQ3 Series Digitizer

PROTECTED

The memory interface is defined by the two functions WriteEeprom() and ReadEeprom(). Refer to their
respective documentation in Appendix A for more information.

ADQ3 Series Digitizers — User Guide spdevices.com Page 137 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

15 API

This section describes the structure of the application programming interface (API) and the general prin-

ciples of composing an application that interfaces with the digitizer. The API consists of two main com-

ponents:

• a platform-specific shared object library: ADQAPI.dll on Windows, libadq.so on Linux; and

• a header file: ADQAPI.h.

The header file defines the constants and function signatures of the library using the C programming

language, but it is possible to successfully interface with the digitizer from any language with a foreign

function interface (FFI) compatible with C. The ADQAPI uses two types of objects (classes): the control

unit and the device object. The control unit manages the connection between the digitizers and the host

computer, and is responsible for creating the device object. The device object handles the communication

with each device. The API functions are categorized into three main sets:

ADQAPI-specific functions

Functions purely related to the API itself and not the operation of a digitizer. These functions do

not require a reference to the control unit, e.g. ADQAPI_ValidateVersion().

ADQ control unit functions

Functions which interface with the control unit for tasks such as finding and identifying digitizers,

e.g. ADQControlUnit_ListDevices().

ADQ functions

Functions which interface with a specific digitizer, e.g. SetParameters().

The normal control flow for an application managing the digitizer consists of the following parts:

1. Identification (Section 15.3)

2. Initialization (Section 15.4)

3. Configuration (Section 15.5)

4. Acquisition (Section 15.6)

5. Cleanup (Section 15.7)

The flow between these parts are visualized in Fig. 46 and described in the following sections using the C

programming language to provide context.

The initialization and configuration parts both use changes to the digitizer’s parameter space when

configuring the digitizer. See Section 15.8 for detailed information on interacting with the parameter

space.

ADQ3 Series Digitizers — User Guide spdevices.com Page 138 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Identification

Initialization

Configuration

Acquisition

Cleanup

Reconfigure

Reinitialize

Restart

Reinitialize

Figure 46: Typical control flow of an application interfacing with an ADQ3 series digitizer.

15.1 SDK Installation

The software development kit (SDK) contains the ADQAPI, drivers and other tools required to success-

fully interface with the digitizer. The installation procedure for Microsoft Windows and Linux is described

in the following sections.

15.1.1 Installing the SDK (Windows)

For Microsoft Windows the SDK is installed by running

TSPD_SDK_windows_<version>.exe

and following the instructions. The <version> part of the file name is the version number.

15.1.2 Installing the SDK (Linux)

The SDK is supported for several Linux distributions and versions. The complete list can be found in the

document listing operating system support [6]. The installation files are included in

TSPD_SDK_linux_<version>.tar.gz

where <version> is the version number. The archive contains installation files for the target distribution
for the ADQAPI, drivers and other tools required to successfully interface with the digitizer. The README
file, located in the root directory of the archive, describes the installation procedure in detail for the

different distributions.

ADQ3 Series Digitizers — User Guide spdevices.com Page 139 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

15.2 Software Examples

The software examples mentioned throughout this document are available on a model and firmware

basis as part of the release archives. They are located in the subdirectory examples/ and separated by
programming language. Some digitizer features are only demonstrated in one programming language.

15.3 Identification

In the identification phase, the available digitizers are listed and selected for setup. The examples below

uses the C API which can be used in both C and C++ applications. For Python, the program flow differs

slightly, refer to Section 16 and the Python example. The digitizer identification is handled by the ADQ

control unit. The first step is to create the control unit:

void *adq_cu = CreateADQControlUnit();
if (adq_cu == NULL)
/* Handle error */

The variable adq_cu is a pointer to the control unit object and must be passed to all API calls interfacing
with a digitizer. The error logging can now be enabled with

ADQControlUnit_EnableErrorTrace(adq_cu, LOG_LEVEL_INFO, ”.”);

Enabling the log file is not required but highly recommended since the API communicates the cause of

errors via log messages. After the control unit has been created, the available devices can be enumer-

ated:

struct ADQInfoListEntry *adq_list = NULL;
unsigned int nof_devices;
if (!ADQControlUnit_ListDevices(adq_cu, &adq_list, &nof_devices))
/* Handle error */

If successful, the nof_devices variable will hold the number of digitizers connected. Assuming at least
one digitizer is available (nof_devices > 0), the first digitizer can be set up:

int device_to_open = 0; /* Indexing starts at 0 */
if (!ADQControlUnit_SetupDevice(adq_cu, device_to_open))
/* Handle error */

If no errors have occurred, the digitizer is now set up and ready to be used. For example, the current

parameter values can be read with GetParameters():

int adq_num = 1; /* Indexing starts at 1 */
struct ADQParameters adq_parameters = {0};
if (ADQ_GetParameters(adq_cu, adq_num, ADQ_PARAMETER_ID_TOP, &adq_parameters)

!= sizeof(adq_parameters))
/* Handle error */

ADQ3 Series Digitizers — User Guide spdevices.com Page 140 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Note that the identification number (adq_num) used in device calls starts at 1.

15.4 Initialization

In the initialization phase, parameter changes that disrupt the digitizer’s operation are performed. See

Section 15.8 for details on interacting with the parameter space.

There are two examples of initialization phase parameters:

• ADQClockSystemParameters (Section 15.4.1)

• ADQInputRoutingParameters (Section 15.4.2)

15.4.1 Clock System

Changing the clock system configuration is disruptive since it resets the ADCs, the clock circuitry, and

other parts of the digitizer’s data path. See Section 4 for details on the available alternatives for con-

figuring the clock system. By default, the clock system is set up to use the internal reference clock and

clock generator, which means that this step can be safely skipped if this is the desired clock system

configuration.

� Note

Configuring the clock system parameters may be safely skipped if the digitizer should use the internal

reference clock and the default base sampling rate.

The code snippet below sets up the clock system for an external reference clock via the CLK port:

/* Allocate a variable to hold the clock system parameters. */
struct ADQClockSystemParameters clock_system;
int result = ADQ_InitializeParameters(adq_cu, adq_num,

ADQ_PARAMETER_ID_CLOCK_SYSTEM,
&clock_system);

if (result != sizeof(clock_system))
{
/* Handle error */

}

/* Enable external reference on the CLK port, with low jitter mode enabled. */
clock_system.reference_source = ADQ_REFERENCE_CLOCK_SOURCE_PORT_CLK;
clock_system.reference_frequency = 10e6;
clock_system.low_jitter_mode_enabled = 1;

/* Set up the clock system. */
result = ADQ_SetParameters(adq_cu, adq_num, &clock_system);
if (result != sizeof(clock_system))
{
/* Handle error */

}

The code snippet below shows a more advanced use case where the external reference clock frequency

and the target sampling rate differ from the default values:

ADQ3 Series Digitizers — User Guide spdevices.com Page 141 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

/* Enable external reference on the CLK port, modified reference frequency
and sampling rate. */

clock_system.reference_source = ADQ_REFERENCE_CLOCK_SOURCE_PORT_CLK;
clock_system.reference_frequency = 25e6;
clock_system.sampling_frequency = 2475e6;
clock_system.low_jitter_mode_enabled = 0;

The code snippet below shows a use case where external clock generation is used, where the full

2250 MHz clock must be supplied via the CLK port:

/* Use external clock generation to sample at 2250 MSPS. */
clock_system.clock_generator = ADQ_CLOCK_GENERATOR_EXTERNAL_CLOCK;
clock_system.sampling_frequency = 2250e6;
clock_system.low_jitter_mode_enabled = 1;

The code snippet below shows a use case where delay adjustment is enabled with a relative delay of

100 ps added to the external reference clock:

/* Use external reference clock with delay adjustment
enabled and 100ps added delay. */

clock_system.reference_source = ADQ_REFERENCE_CLOCK_SOURCE_PORT_CLK;
clock_system.reference_frequency = 10e6;
clock_system.delay_adjustment_enabled = 1;
clock_system.delay_adjustment = 100e-12;

15.4.2 Input Routing

Changing the input routing parameters is disruptive because it resets the interface between ADC and

FPGA, temporarily stopping the flow of data, and also affects several sections of the configuration phase

ADQParameters, such as channel labels and front-end parameters.
The code snippet below shows an example where the input routing of API channel index 0 on an

ADQ32-1CH digitizer is changed from the default input A to the alternate input B:

ADQ3 Series Digitizers — User Guide spdevices.com Page 142 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

/* Allocate a variable to hold the clock system parameters. */
struct ADQInputRoutingParameters input_routing;
int result = ADQ_InitializeParameters(adq_cu, adq_num,

ADQ_PARAMETER_ID_INPUT_ROUTING,
&input_routing);

if (result != sizeof(input_routing))
{
/* Handle error */

}

/* Change the analog input connected to channel 0 from input A to input B. */
input_routing.channel[0].input = ADQ_ANALOG_INPUT_B;

/* Set up the clock system. */
result = ADQ_SetParameters(adq_cu, adq_num, &input_routing);
if (result != sizeof(input_routing))
{
/* Handle error */

}

15.5 Configuration

In the configuration phase, the digitizer’s parameters are given values that determine both the immediate

behavior, but also the behavior during the acquisition phase (Section 15.6). An example of the former is

the state of an output configured GPIO port when its value is changed. An example of the latter is the

number of records to acquire for a target channel. The parameter values should be considered to be

volatile information and will only persist as long as the digitizer is not reinitialized (Section 15.4). See

Section 15.8 for details on interacting with the parameter space.

15.6 Acquisition

Acquiring data from the digitizer differs slightly depending on the configuration of the data transfer inter-

face (Section 10). This section highlights the data readout interface, with records being transferred to the

host computer’s RAM. For other use cases, refer to the corresponding source code example. Assuming

that the configuration step has been completed (Section 15.5) and the data transfer parameters have

been configured according to Section 10.5. The data acquisition is started with

int result = ADQ_StartDataAcquisition(adq_cu, adq_num);
if (result != ADQ_EOK)
{
/* Handle error */

}

If the call is successful, the data readout loop follows. The program waits for a record from any channel

by using the constant ADQ_ANY_CHANNEL in the call to WaitForRecordBuffer(). Except for the value

ADQ_EAGAIN, which indicates a timeout, negative values indicate errors where the data acquisition must
be aborted.

ADQ3 Series Digitizers — User Guide spdevices.com Page 143 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

bool done = false;
while (!done)
{
struct ADQGen4Record *record;
int channel = ADQ_ANY_CHANNEL;

/* Wait for a record buffer with a 1000 ms timeout. */
int64_t bytes_received = ADQ_WaitForRecordBuffer(
adq_cu, adq_num, &channel, (void **)(&record), 1000, NULL

);

if (bytes_received == ADQ_EAGAIN)
{
/* Timeout */
continue;

}
else if (bytes_received < 0)
{
/* An unexpected error, abort the acquisition. */
break;

}

At this point, the data processing step takes place. Refer to Section 10.5.3, step 5 for more information

about important aspects to consider in this stage. Once the data has been processed, the API expects

a call to ReturnRecordBuffer(), signaling that the underlying memory is once again available to place
new data into. The data readout loop ends with evaluating the stop condition. This is highly application

specific but common events include key presses or that a certain number of records have been acquired.

result = ADQ_ReturnRecordBuffer(adq_cu, adq_num, channel, record);
if (result != ADQ_EOK)
{
/* An unexpected error, abort the acquisition. */
break;

}

/* Check for the stop condition. */
done = ...

}

Finally, the phase ends with stopping the data acquisition process. This step should always be carried

out regardless of if the program encountered an error or not.

ADQ3 Series Digitizers — User Guide spdevices.com Page 144 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

result = ADQ_StopDataAcquisition(adq_cu, adq_num);
switch (result)
{
case ADQ_EOK:
case ADQ_EINTERRUPTED:
/* Expected return value. */
break;

default:
/* Unexpected return value. */
break;

}

15.7 Cleanup

In the cleanup phase the resources allocated by the user and the API should be deallocated. For the

API, the cleanup is performed by calling

DeleteADQControlUnit(adq_cu);

which will delete the control unit and all device objects. The memory allocated by the API, e.g. the

record buffers, will also be freed. Any attempt to read this memory after the control unit has been deleted

will cause access violations. To reconnect to the digitizer, the steps outlined in the identification phase

(Section 15.3) must be executed.

ADQ3 Series Digitizers — User Guide spdevices.com Page 145 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

15.8 Parameter Space

Both the initialization and configuration parts of the control flow use modifications to the digitizer’s pa-

rameter space to configure and change the behavior of the digitizer.

The digitizer’s parameter space is organized as a tree structure where the outermost nodes represent

the individual parameters. These nodes are grouped together according to their function, forming a

parameter set. Parameter sets with a common thememay also be grouped together, forming a parameter

set group. The root node represents the digitizer itself, collecting all the parameter sets and parameter

set groups to form a complete map of the digitizer’s parameter space:

ADQ3 series digitizer

Parameter set group A

Parameter set A

Parameter A

Parameter B

Parameter set B

Parameter C

Parameter D

Parameter set C

Parameter E

Parameter F

...

Interacting with the digitizer’s parameters involves this tree structure and four functions:

• InitializeParameters()

• GetParameters()

• ValidateParameters()

• SetParameters()

From the perspective of the user application, these functions transport parameters in two directions:

• InitializeParameters() and GetParameters() are read operations, where parameter values

flow from the API to the user application.

• ValidateParameters() and SetParameters() are write operations, where parameter values flow
from the user application to the API.

The functions can operate on:

• the entire tree, effectively reading or writing the full parameter space with every operation; or

• parts of the tree, where only the targeted parameter set or parameter set group is affected.

ADQ3 Series Digitizers — User Guide spdevices.com Page 146 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Throughout the tree, there are specific nodes that hold information about the structure itself. These nodes

signal that the tree may be broken off at this point and used together with the configuration functions,

effectively configuring a subset of the parameter space. These specific nodes are the parameter sets

and the parameter set groups.

The tree structure offers flexibility in choosing how to integrate the digitizer into the user application.

In some cases, the most straight-forward way may be to operate on the full parameter set and keep

the entire tree readily available. In other cases, the most reasonable approach may be to build up

functionality around the various parameter sets, interacting with the digitizer on a more granular level.

15.8.1 In Practice

Most programming languages have a way of organizing data in a hierarchy. In the C programming

language, structures, or structs, are used for this purpose. The header file contains the struct definitions

that together build up the nodes of the parameter tree described in Section 15.8.

The result is a binary format that can be handled in the same way as any other similar structure:

written to a file, read from a file, transmitted over a network, converted into a human readable format,

parsed from a human readable format etc.

The code snippet below takes the approach of allocating a variable representing the full parameter

space and calling InitializeParameters() to seed the parameters with their default values. The return
value on success will be the size of the object while negative values indicate an error. This property is

shared across all the configuration functions.

/* Allocate a variable to hold the digitizer parameters. */
struct ADQParameters adq;
int result = ADQ_InitializeParameters(adq_cu, adq_num, ADQ_PARAMETER_ID_TOP, &adq);
if (result != sizeof(adq))
{
/* Handle error */

}

Following a successful initialization, it is safe to start modifying the parameter values. In the following

code snippet, the data acquisition parameters for one of the channels are set up to acquire 10 records,

each with 2048 samples every time the TRIG port detects a rising edge.

/* Activate one of the channels. */
adq.acquisition.channel[0].nof_records = 10;
adq.acquisition.channel[0].record_length = 2048;
adq.acquisition.channel[0].trigger_source = ADQ_EVENT_SOURCE_TRIG;
adq.acquisition.channel[0].trigger_edge = ADQ_EDGE_RISING;

It is important to note that technically, the digitizer state has not beenmodified at this point, only the values

in the local parameter tree structure. Thus, since the application has not interacted with the hardware,

there has been no need to handle errors as the assignments are processed.

The configuration is validated and written to the digitizer by calling SetParameters() with a reference
to the updated parameter set. Since the full parameter set is passed to the function, the entire parameter

space of the digitizer will be written, not just the acquisition parameters. The other parameters keep their

default values assigned by the call to InitializeParameters().

ADQ3 Series Digitizers — User Guide spdevices.com Page 147 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

/* The other parameters get their default values from InitializeParameters(). */
result = ADQ_SetParameters(adq_cu, adq_num, &adq);
if (result != sizeof(adq))
{
/* Handle error */

}

To only update the parameters of the data acquisition process, the tree can be split off at the acquisition
node:

result = ADQ_SetParameters(adq_cu, adq_num, &adq.acquisition);
if (result != sizeof(adq.acquisition))
{
/* Handle error */

}

15.8.2 JSON

To provide support for programming languages where the struct-based view of the parameter space

is not easily represented in native data types—or just to generate a human-readable representation—

an ASCII-based parameter API is also available. This API uses JSON-formatted text to represent the

parameter space. Two sources/destinations for the JSON data are supported, each with their own set of

API functions to interface with the digitizer:

• a zero terminated array of ASCII characters (a C-string):

– InitializeParametersString()

– GetParametersString()

– ValidateParametersString()

– SetParametersString()

• a file on the host computer:

– InitializeParametersFilename()

– GetParametersFilename()

– ValidateParametersFilename()

– SetParametersFilename()

Please refer to the corresponding entry in the API reference documentation (Appendix A) for more infor-

mation.

� Note

The JSONAPI is implemented as a translation layer between the text representation and the underlying

binary format. All actions are executed using the binary format.

� Important

Enumerations are represented as strings. The set of accepted values are the names defined by the

corresponding enumeration.

ADQ3 Series Digitizers — User Guide spdevices.com Page 148 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Important

64-bit integers are represented as strings. Modifying these values using arithmetic operations requires

conversion to/from a suitable native integer type in the employed programming language.

The code snippet below demonstrates how to read the current clock system parameters.

/* Allocate a character array large enough to hold the clock system parameter set. */
char clock_parameters[1024];
int result = ADQ_GetParametersString(
adq_cu, adq_num, ADQ_PARAMETER_ID_CLOCK_SYSTEM, clock_parameters, 1024, 1

);

if (result < 0)
{
/* Handle error */

}

/* Print the parameter set */
printf(”%s”, clock_parameters);

Which produces the output:

{
”clock_generator”: ”ADQ_CLOCK_GENERATOR_INTERNAL_PLL”,
”reference_source”: ”ADQ_REFERENCE_CLOCK_SOURCE_INTERNAL”,
”sampling_frequency”: 5000000000,
”reference_frequency”: 10000000,
”delay_adjustment”: 0,
”low_jitter_mode_enabled”: 1,
”delay_adjustment_enabled”: 0

}

ADQ3 Series Digitizers — User Guide spdevices.com Page 149 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

16 Python API

A Python package named pyadq is provided for interfacing with the digitizer using Python. This package
is a pure Python wrapper for the C API, and is the recommended way to access the digitizer in Python.

To use the package, the following prerequisites have to be met:

• a system with Python 3.6 or later,

• the numpy and ctypes Python packages; and

• the ADQAPI.

The pyadq package contains two classes: pyadq.ADQ and pyadq.ADQControlUnit which wrap the ADQ
object and the ADQ control unit object, respectively. Both of these classes have two types of member

methods:

• Methods passed to directly to the ADQAPI. All of these methods are prefixed with either

ADQControlUnit_ or ADQ_, for example pyadq.ADQ.ADQ_GetProductID. These functions take

the same arguments and return the same type as the ADQAPI call. All functions listed in this

document are available under these prefixes.

• Methods implemented in Python which wrap one or multiple ADQAPI library calls, for example

pyadq.ADQ.SetParameters. These functions have a more pythonic behavior. The complete list of

these functions can be found in the package files ADQ.py and ADQControlUnit.py files.

For methods implemented in python, a detailed description of the methods along with their input argu-

ments and return values can be found through the python help() function:

import pyadq

help(pyadq.ADQ)
help(pyadq.ADQControlUnit)

All of the C structs listed in Section A.3 have a corresponding Python implementation with native Python

types. The configuration functions:

• pyadq.ADQ.SetParameters,

• pyadq.ADQ.GetParameters,

• pyadq.ADQ.InitializeParameters,

• pyadq.ADQ.ValidateParameters; and

• pyadq.ADQ.GetStatus

all use the native Python implementations of the C structs.

The configuration functions for the JSONAPI described in Section 15.8.2 also have Python wrappers

to help with the string handling:

• pyadq.ADQ.SetParametersString

ADQ3 Series Digitizers — User Guide spdevices.com Page 150 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• pyadq.ADQ.GetParametersString

• pyadq.ADQ.InitializeParametersString

• pyadq.ADQ.ValidateParametersString

• pyadq.ADQ.GetStatusString

• pyadq.ADQ.SetParametersFilename

• pyadq.ADQ.GetParametersFilename

• pyadq.ADQ.InitializeParametersFilename

• pyadq.ADQ.ValidateParametersFilename

• pyadq.ADQ.GetStatusFilename

In order to simplify data collection via the data readout interface, both WaitForRecordBuffer() and

ReturnRecordBuffer() have beenmerged into the single Pythonmethod pyadq.ADQ.WaitForRecordBuffer.
The received data is copied into a numpy array so that the record buffer can be returned immediately.

For reading and writing registers in the user logic area of the FPGA development kit, the following

functions have Python wrappers to help with pointer handling:

• pyadq.ADQ.WriteUserRegister

• pyadq.ADQ.ReadUserRegister

16.1 Installation

The pyadq package can be installed to the directory for user-installed packages by executing

$ pip install --user <path to pyadq>

References

[1] Teledyne Signal Processing Devices Sweden AB, 22-2869 ADQ30 datasheet. Technical Specifica-

tion.

[2] Teledyne Signal Processing Devices Sweden AB, 20-2378 ADQ32 datasheet. Technical Specifica-

tion.

[3] Teledyne Signal Processing Devices Sweden AB, 20-2451 ADQ33 datasheet. Technical Specifica-

tion.

[4] Teledyne Signal Processing Devices Sweden AB, 20-2540 ADQ36 datasheet. Technical Specifica-

tion.

[5] Teledyne Signal Processing Devices SwedenAB, 18-2059 ADQUpdater User Guide. Technical Man-

ual.

ADQ3 Series Digitizers — User Guide spdevices.com Page 151 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

[6] Teledyne Signal Processing Devices Sweden AB, 15-1494 Digitizer OS Support. Technical Specifi-

cation.

[7] Teledyne Signal Processing Devices Sweden AB, 14-1351 ADQAPI Reference Guide. Technical

Manual.

[8] Teledyne Signal Processing Devices Sweden AB, 20-2507 ADQ3 Series Development Kit User

Guide. Technical Manual.

ADQ3 Series Digitizers — User Guide spdevices.com Page 152 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A API Reference

This section contains detailed descriptions of the defines, enumerations, structures and functions that

together make up the API for ADQ3 series digitizers.

� Important

All objects described in the following sections are defined in the ADQAPI.h header file. Please refrain
from redefining constants and structures.

A.1 Defines

This section lists the constants that are not tied to a particular type. Many of the constants are on the form

of ADQ_MAX_NOF... and define absolute limits of what the API supports with respect to various objects.

These limits are set so that they are not a problem in practice, e.g. no digitizer will feature more channels

than the value of ADQ_MAX_NOF_CHANNELS.
The primary use of the constants are as an aid in writing robust user applications that automatically

adapt to whichever API version it is compiled against. For example, the structures defined in Section A.3

use these constants to define upper bounds for their static arrays.

ADQAPI_VERSION_MAJOR . 154

ADQAPI_VERSION_MINOR . 154

ADQ_MAX_NOF_CHANNELS . 154

ADQ_MAX_NOF_BUFFERS . 154

ADQ_MAX_NOF_PORTS . 155

ADQ_MAX_NOF_PINS . 155

ADQ_MAX_NOF_ADC_CORES . 155

ADQ_MAX_NOF_INPUT_RANGES . 155

ADQ_MAX_NOF_PATTERN_GENERATORS . 155

ADQ_MAX_NOF_PULSE_GENERATORS . 155

ADQ_MAX_NOF_PATTERN_INSTRUCTIONS . 155

ADQ_MAX_NOF_TEMPERATURE_SENSORS . 156

ADQ_MAX_NOF_FILTER_COEFFICIENTS . 156

ADQ_MAX_NOF_MATRIX_INPUTS . 156

ADQ_MAX_NOF_ATD_THRESHOLD_FILTER_COEFFICIENTS 156

ADQ_MAX_NOF_PLLS . 156

ADQ_ANY_CHANNEL . 156

ADQ_INFINITE_RECORD_LENGTH . 156

ADQ_INFINITE_NOF_RECORDS . 157

ADQ_UNITY_GAIN . 157

ADQ_FOLLOW_RECORD_TRANSFER_BUFFER . 157

ADQ_PARAMETERS_MAGIC . 157

ADQ_DATA_READOUT_STATUS_FLAGS_OK . 157

ADQ_DATA_READOUT_STATUS_FLAGS_STARVING . 157

ADQ_DATA_READOUT_STATUS_FLAGS_INCOMPLETE . 158

ADQ3 Series Digitizers — User Guide spdevices.com Page 153 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_DATA_READOUT_STATUS_FLAGS_DISCARDED . 158

LOG_LEVEL_ERROR . 158

LOG_LEVEL_WARN . 158

LOG_LEVEL_INFO . 158

ADQ_DATA_FORMAT_INT16 . 158

ADQ_DATA_FORMAT_INT32 . 159

ADQ_DATA_FORMAT_PULSE_ATTRIBUTES . 159

ADQ_RECORD_STATUS_LOST_DATA . 159

ADQ_RECORD_STATUS_OVERRANGE . 159

ADQ_RECORD_STATUS_RISING_EDGE . 159

ADQ_RECORD_STATUS_FILL_FACTOR . 159

ADQ_PULSE_ATTRIBUTES_STATUS_VALID . 160

#define ADQAPI_VERSION_MAJOR 11

Description

Themajor version number of theAPI. This constant is used with the function ADQAPI_ValidateVersion()
to protect against dynamically linking against an incompatible API. It is strongly recommended to imple-

ment this safe-guard in the user application.

#define ADQAPI_VERSION_MINOR 0

Description

The minor version number of the API. The documentation for ADQAPI_VERSION_MAJOR applies for this

constant as well.

#define ADQ_MAX_NOF_CHANNELS 8

Description

The maximum number of channels supported by the API.

#define ADQ_MAX_NOF_BUFFERS 16

Description

The maximum number of buffers supported by the API.

ADQ3 Series Digitizers — User Guide spdevices.com Page 154 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

#define ADQ_MAX_NOF_PORTS 8

Description

The maximum number of ports supported by the API.

#define ADQ_MAX_NOF_PINS 16

Description

The maximum number of pins supported by a port.

#define ADQ_MAX_NOF_ADC_CORES 4

Description

The maximum number of ADC cores supported by a channel.

#define ADQ_MAX_NOF_INPUT_RANGES 8

Description

The maximum number of input range configurations supported by a channel.

#define ADQ_MAX_NOF_PATTERN_GENERATORS 2

Description

The maximum number of pattern generators.

#define ADQ_MAX_NOF_PULSE_GENERATORS 4

Description

The maximum number of pulse generators.

#define ADQ_MAX_NOF_PATTERN_INSTRUCTIONS 16

Description

The maximum number of pattern generator instructions.

ADQ3 Series Digitizers — User Guide spdevices.com Page 155 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

#define ADQ_MAX_NOF_TEMPERATURE_SENSORS 16

Description

The maximum number of temperature sensors.

#define ADQ_MAX_NOF_FILTER_COEFFICIENTS 10

Description

The maximum number of filter coefficients.

#define ADQ_MAX_NOF_MATRIX_INPUTS 8

Description

The maximum number of inputs to the matrix event source.

#define ADQ_MAX_NOF_ATD_THRESHOLD_FILTER_COEFFICIENTS 9

Description

The maximum number of coefficients supported by the ATD signal processing module threshold filter.

#define ADQ_MAX_NOF_PLLS 8

Description

The maximum number of PLLs in the digitizer’s clock system.

#define ADQ_ANY_CHANNEL (-1)

Description

An alias for the value −1 which causes WaitForRecordBuffer() to return the first available data from

any channel when used by its channel parameter.

#define ADQ_INFINITE_RECORD_LENGTH (-1)

Description

An alias for the value −1 which causes the data acquisition process (Section 9) to become unbounded
in terms of the length of the acquired record when passed to the parameter record_length.

ADQ3 Series Digitizers — User Guide spdevices.com Page 156 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

#define ADQ_INFINITE_NOF_RECORDS (-1)

Description

An alias for the value −1 which causes the data acquisition process (Section 9) to become unbounded
in terms of the number of records to acquire when passed to the parameter nof_records.

#define ADQ_UNITY_GAIN (1024)

Description

An alias for the value 1024 which signifies unity gain in the context of the digital gain and offset module

(Section 5.1).

#define ADQ_FOLLOW_RECORD_TRANSFER_BUFFER (-1)

Description

An alias for the value −1 which is intended to be passed to the data readout parameter nof_record_
buffers_in_array to specify that the array should follow the capacity of the underlying record transfer

buffer w.r.t. the number of array elements.

#define ADQ_PARAMETERS_MAGIC (0xAA559977AA559977ull)

Description

Amagic number to indicate the end of a parameter struct. This constant should never appear in the user

application if the recommended configuration flow is followed. It is managed by the two configuration

functions InitializeParameters() and GetParameters().

#define ADQ_DATA_READOUT_STATUS_FLAGS_OK (0)

Description

An alias for the value 0 which is used to indicate that the data readout status member flags reports no
errors.

#define ADQ_DATA_READOUT_STATUS_FLAGS_STARVING (1u << 0)

Description

An alias for the value 1u << 0 which is used to indicate that the data readout status member flags
reports that interface is starving for record buffers.

ADQ3 Series Digitizers — User Guide spdevices.com Page 157 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

#define ADQ_DATA_READOUT_STATUS_FLAGS_INCOMPLETE (1u << 1)

Description

An alias for the value 1u << 1 which may be used to mask the data readout status member flags. If
the result is nonzero, the record buffer emitted by WaitForRecordBuffer() contains incomplete record
data. See Section 10.5.7 for details.

#define ADQ_DATA_READOUT_STATUS_FLAGS_DISCARDED (1u << 2)

Description

An alias for the value 1u << 2 which may be used to mask the data readout status member flags. If the
result is nonzero, one or several records were discarded due to incomplete data. See Section 10.5.6 for

additional information.

#define LOG_LEVEL_ERROR 0

Description

An alias for the value 0 which enables error logging when passed to ADQControlUnit_EnableError-
Trace().

#define LOG_LEVEL_WARN 1

Description

An alias for the value 1 which enables error and warning logging when passed to ADQControlUnit_
EnableErrorTrace().

#define LOG_LEVEL_INFO 2

Description

An alias for the value 2 which enables error, warning and info logging when passed to ADQControlUnit_
EnableErrorTrace().

#define ADQ_DATA_FORMAT_INT16 0

Description

An alias for the value 0 which is used by the record header field data_format to indicate that the record
contains 16-bit, 2’s complement data.

ADQ3 Series Digitizers — User Guide spdevices.com Page 158 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

#define ADQ_DATA_FORMAT_INT32 1

Description

An alias for the value 1 which is used by the record header field data_format to indicate that the record
contains 32-bit, 2’s complement data.

#define ADQ_DATA_FORMAT_PULSE_ATTRIBUTES 3

Description

An alias for the value 3 which is used by the record header field data_format to indicate that the record
contains pulse attribute data. This value is only possible when the digitizer is running the FWPD firmware

(Section 5.7).

#define ADQ_RECORD_STATUS_LOST_DATA (1u << 0)

Description

An alias for the value 1 << 0 which may be used to mask the header field record_status. If the result
is nonzero, the record is incomplete and has lost data at the end in an unrecoverable way due to an

overflow. See Section 10.6 for more information.

#define ADQ_RECORD_STATUS_OVERRANGE (1u << 2)

Description

An alias for the value 1 << 2 which may be used to mask the header field record_status. If the result is
nonzero, one or several samples in the record have saturated at the maximum or minimum value when

the actual value cannot be represented in the available range.

#define ADQ_RECORD_STATUS_RISING_EDGE (1u << 3)

Description

An alias for the value 1 << 3 which may be used to mask the header field record_status. If the result is
nonzero, the record was triggered by a rising edge event from the target trigger_source. This is useful
to differentiate between records when the trigger_edge is set to ADQ_EDGE_BOTH.

#define ADQ_RECORD_STATUS_FILL_FACTOR (x) ((x >> 5) & 0x7u)

Description

Amacro that extracts the 3-bit field from bit 5 to 7 from the value given as the argument x. This macro is

ADQ3 Series Digitizers — User Guide spdevices.com Page 159 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

intended to be used together with the record header field record_status to extract the fill factor of the
digitizer’s on-board memory at the time when the corresponding record was acquired.

#define ADQ_PULSE_ATTRIBUTES_STATUS_VALID (1u << 0)

Description

An alias for the value 1 << 0 which may be used to mask the pulse attributes status field. If the result
is nonzero, all attributes are valid. If the result is zero, one or several of the attributes are invalid. See

Section 5.7.4 for more information.

ADQ3 Series Digitizers — User Guide spdevices.com Page 160 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.2 Enumerations

This section lists the constants that are tied to a particular type, i.e. enumerations. To improve read-

ability and to make the source code easier to maintain, it is strongly recommended to use these named

constants and not the corresponding integer value.

� Note

The enumerations types defined in this section are made as 32-bit types.

ADQParameterId . 162

ADQStatusId . 168

ADQEventSource . 170

ADQTestPatternSource . 174

ADQPort . 175

ADQPinPxie . 177

ADQImpedance . 178

ADQDirection . 178

ADQEdge . 179

ADQPolarity . 179

ADQClockGenerator . 180

ADQReferenceClockSource . 180

ADQFunction . 181

ADQPatternGeneratorOperation . 182

ADQMarkerMode . 183

ADQMemoryOwner . 183

ADQSynchronizationMode . 184

ADQArm . 184

ADQFirmwareType . 184

ADQCommunicationInterface . 185

ADQCoefficientFormat . 185

ADQRoundingMethod . 186

ADQUserLogic . 186

ADQEeprom . 187

ADQHWIFEnum . 188

ADQProductID_Enum . 189

ADQAnalogInput . 190

ADQFanMode . 191

ADQBufferAction . 191

ADQ3 Series Digitizers — User Guide spdevices.com Page 161 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQParameterId {
ADQ_PARAMETER_ID_RESERVED = 0,
ADQ_PARAMETER_ID_DATA_ACQUISITION = 1,
ADQ_PARAMETER_ID_DATA_TRANSFER = 2,
ADQ_PARAMETER_ID_DATA_READOUT = 3,
ADQ_PARAMETER_ID_CONSTANT = 4,
ADQ_PARAMETER_ID_DIGITAL_GAINANDOFFSET = 5,
ADQ_PARAMETER_ID_EVENT_SOURCE_LEVEL = 6,
ADQ_PARAMETER_ID_DBS = 7,
ADQ_PARAMETER_ID_SAMPLE_SKIP = 8,
ADQ_PARAMETER_ID_TEST_PATTERN = 9,
ADQ_PARAMETER_ID_EVENT_SOURCE_PERIODIC = 10,
ADQ_PARAMETER_ID_EVENT_SOURCE_TRIG = 11,
ADQ_PARAMETER_ID_EVENT_SOURCE_SYNC = 12,
ADQ_PARAMETER_ID_ANALOG_FRONTEND = 13,
ADQ_PARAMETER_ID_PATTERN_GENERATOR0 = 14,
ADQ_PARAMETER_ID_PATTERN_GENERATOR1 = 15,
ADQ_PARAMETER_ID_EVENT_SOURCE = 16,
ADQ_PARAMETER_ID_SIGNAL_PROCESSING = 17,
ADQ_PARAMETER_ID_FUNCTION = 18,
ADQ_PARAMETER_ID_TOP = 19,
ADQ_PARAMETER_ID_PORT_TRIG = 20,
ADQ_PARAMETER_ID_PORT_SYNC = 21,
ADQ_PARAMETER_ID_PORT_SYNCO = 22,
ADQ_PARAMETER_ID_PORT_SYNCI = 23,
ADQ_PARAMETER_ID_PORT_CLK = 24,
ADQ_PARAMETER_ID_PORT_CLKI = 25,
ADQ_PARAMETER_ID_PORT_CLKO = 26,
ADQ_PARAMETER_ID_PORT_GPIOA = 27,
ADQ_PARAMETER_ID_PORT_GPIOB = 28,
ADQ_PARAMETER_ID_PORT_PXIE = 29,
ADQ_PARAMETER_ID_PORT_MTCA = 30,
ADQ_PARAMETER_ID_PULSE_GENERATOR0 = 31,
ADQ_PARAMETER_ID_PULSE_GENERATOR1 = 32,
ADQ_PARAMETER_ID_PULSE_GENERATOR2 = 33,
ADQ_PARAMETER_ID_PULSE_GENERATOR3 = 34,
ADQ_PARAMETER_ID_TIMESTAMP_SYNCHRONIZATION = 35,
ADQ_PARAMETER_ID_FIR_FILTER = 36,
ADQ_PARAMETER_ID_PORT_GPIOC = 37,
ADQ_PARAMETER_ID_EVENT_SOURCE_GPIOA = 38,
ADQ_PARAMETER_ID_EVENT_SOURCE_GPIOB = 39,
ADQ_PARAMETER_ID_CLOCK_SYSTEM = 40,
ADQ_PARAMETER_ID_EVENT_SOURCE_PXIE = 41,

ADQ3 Series Digitizers — User Guide spdevices.com Page 162 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_PARAMETER_ID_EVENT_SOURCE_SOFTWARE = 42,
ADQ_PARAMETER_ID_EVENT_SOURCE_MATRIX = 43,
ADQ_PARAMETER_ID_EVENT_SOURCE_LEVEL_MATRIX = 44,
ADQ_PARAMETER_ID_PDRX = 45,
ADQ_PARAMETER_ID_ATD = 46,
ADQ_PARAMETER_ID_DAISY_CHAIN = 47,
ADQ_PARAMETER_ID_INPUT_ROUTING = 48,
ADQ_PARAMETER_ID_PD = 49,
ADQ_PARAMETER_ID_SYSTEM_MANAGER = 50,
ADQ_PARAMETER_ID_FRACTIONAL_N_PLL = 51,
ADQ_PARAMETER_ID_BUFFER_ADDRESS = 52,
ADQ_PARAMETER_ID_RUNTIME_CONFIGURATION = 53

}

Description

An enumeration of the parameter set identification numbers used by the configuration functions

InitializeParameters(), GetParameters(), SetParameters() and ValidateParameters().

Values

ADQ_PARAMETER_ID_RESERVED (0)

Reserved

ADQ_PARAMETER_ID_DATA_ACQUISITION (1)

The identification number for the data acquisition parameters, defined by ADQDataAcquisition-
Parameters.

ADQ_PARAMETER_ID_DATA_TRANSFER (2)

The identification number for the data transfer parameters, defined by ADQDataTransfer-
Parameters.

ADQ_PARAMETER_ID_DATA_READOUT (3)

The identification number for the data readout parameters, defined by ADQDataReadout-
Parameters.

ADQ_PARAMETER_ID_CONSTANT (4)

The identification number for the constant parameters, defined by ADQConstantParameters.

ADQ_PARAMETER_ID_DIGITAL_GAINANDOFFSET (5)

The identification number for the digitial gain and offset parameters, defined by ADQDigitalGain-
AndOffsetParameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_LEVEL (6)

The identification number for the level event source parameters, defined by ADQEventSource-
LevelParameters.

ADQ3 Series Digitizers — User Guide spdevices.com Page 163 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_PARAMETER_ID_DBS (7)

The identification number for the digital baseline stabilization parameters, defined by ADQDbs-
Parameters.

ADQ_PARAMETER_ID_SAMPLE_SKIP (8)

The identification number for the sample skip parameters, defined by ADQSampleSkipParameters.

ADQ_PARAMETER_ID_TEST_PATTERN (9)

The identification number for the constant parameters, defined by ADQConstantParameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_PERIODIC (10)

The identification number for the periodic event generator, defined by ADQEventSourcePeriodic-
Parameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_TRIG (11)

The identification number for the parameters of the event source associated with the TRIG port,

defined by ADQEventSourcePortParameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_SYNC (12)

The identification number for the parameters of the event source associated with the SYNC port,

defined by ADQEventSourcePortParameters.

ADQ_PARAMETER_ID_ANALOG_FRONTEND (13)

The identification number for the analog front-end parameters, defined by ADQAnalogFrontend-
Parameters.

ADQ_PARAMETER_ID_PATTERN_GENERATOR0 (14)

The identification number for the parameters of the first pattern generator instance, defined by

ADQPatternGeneratorParameters.

ADQ_PARAMETER_ID_PATTERN_GENERATOR1 (15)

The identification number for the parameters of the second pattern generator instance, defined

by ADQPatternGeneratorParameters.

ADQ_PARAMETER_ID_EVENT_SOURCE (16)

The identification number for the parameters of all the event sources, defined by ADQEventSource-
Parameters.

ADQ_PARAMETER_ID_SIGNAL_PROCESSING (17)

The identification number for the parameters of all the signal processing modules, defined by

ADQSignalProcessingParameters.

ADQ_PARAMETER_ID_FUNCTION (18)

The identification number for the parameters of all the function modules, defined by ADQFunction-
Parameters.

ADQ3 Series Digitizers — User Guide spdevices.com Page 164 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_PARAMETER_ID_TOP (19)

The identification number for the structure representing the entire parameter space of the digitizer,

defined by ADQParameters.

ADQ_PARAMETER_ID_PORT_TRIG (20)

The identification number for the parameters associated with the TRIG port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_SYNC (21)

The identification number for the parameters associated with the SYNC port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_SYNCO (22)

The identification number for the parameters associated with the SYNCO port, defined by

ADQPortParameters.

ADQ_PARAMETER_ID_PORT_SYNCI (23)

The identification number for the parameters associated with the SYNCI port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_CLK (24)

The identification number for the parameters associated with the CLK port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_CLKI (25)

The identification number for the parameters associated with the CLKI port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_CLKO (26)

The identification number for the parameters associated with the CLKO port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_GPIOA (27)

The identification number for the parameters associated with the GPIOAport, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_GPIOB (28)

The identification number for the parameters associated with the GPIOB port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_PXIE (29)

The identification number for the parameters associated with the PXIE port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_PORT_MTCA (30)

The identification number for the parameters associated with the MTCAport, defined by ADQPort-

ADQ3 Series Digitizers — User Guide spdevices.com Page 165 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Parameters.

ADQ_PARAMETER_ID_PULSE_GENERATOR0 (31)

The identification number for the parameters of the first pulse generator, defined by ADQPulse-
GeneratorParameters.

ADQ_PARAMETER_ID_PULSE_GENERATOR1 (32)

The identification number for the parameters of the second pulse generator, defined by ADQPulse-
GeneratorParameters.

ADQ_PARAMETER_ID_PULSE_GENERATOR2 (33)

The identification number for the parameters of the third pulse generator, defined by ADQPulse-
GeneratorParameters.

ADQ_PARAMETER_ID_PULSE_GENERATOR3 (34)

The identification number for the parameters of the fourth pulse generator, defined by ADQPulse-
GeneratorParameters.

ADQ_PARAMETER_ID_TIMESTAMP_SYNCHRONIZATION (35)

The identification number for the parameters of the timestamp synchronization defined by

ADQTimestampSynchronizationParameters.

ADQ_PARAMETER_ID_FIR_FILTER (36)

The identification number for the parameters of the FIR filter defined by ADQFirFilterParameters.

ADQ_PARAMETER_ID_PORT_GPIOC (37)

The identification number for the parameters associated with the GPIOC port, defined by ADQPort-
Parameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_GPIOA (38)

The identification number for the parameters of the event source associated with the GPIOA port,

defined by ADQEventSourcePortParameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_GPIOB (39)

The identification number for the parameters of the event source associated with the GPIOB port,

defined by ADQEventSourcePortParameters.

ADQ_PARAMETER_ID_CLOCK_SYSTEM (40)

The identification number for the parameters of the clock system defined by ADQClockSystem-
Parameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_PXIE (41)

The identification number for the parameters of the event source associated with the PXIE port,

defined by ADQEventSourcePortParameters.

ADQ3 Series Digitizers — User Guide spdevices.com Page 166 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_PARAMETER_ID_EVENT_SOURCE_SOFTWARE (42)

The identification number for the parameters of the software controlled event source, defined by

ADQEventSourceSoftwareParameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_MATRIX (43)

The identification number for the parameters of the matrix event source, defined by ADQEvent-
SourceMatrixParameters.

ADQ_PARAMETER_ID_EVENT_SOURCE_LEVEL_MATRIX (44)

The identification number for the parameters of the signal level event source matrix, defined by

ADQEventSourceLevelMatrixParameters.

ADQ_PARAMETER_ID_PDRX (45)

The identification number for the parameters of the pulse detection range extension module, de-

fined by ADQPdrxParameters.

ADQ_PARAMETER_ID_ATD (46)

The identification number for the parameters of the ATD signal processing module, defined by

ADQAtdParameters.

ADQ_PARAMETER_ID_DAISY_CHAIN (47)

The identification number for the parameters of the daisy chain function, defined by ADQDaisy-
ChainParameters.

ADQ_PARAMETER_ID_INPUT_ROUTING (48)

The identification number for the parameters that determine routing of analog inputs to channels

in the digitizer, defined by ADQInputRoutingParameters.

ADQ_PARAMETER_ID_PD (49)

The identification number for the parameters of the PD signal processing module, defined by

ADQPdParameters.

ADQ_PARAMETER_ID_SYSTEM_MANAGER (50)

The identification number for the parameters of the system manager, defined by ADQSystem-
ManagerParameters.

ADQ_PARAMETER_ID_FRACTIONAL_N_PLL (51)

The identification number for the parameters of the fractional-N PLL function, defined by

ADQFractionalNPllParameters.

ADQ_PARAMETER_ID_BUFFER_ADDRESS (52)

The identification number for the parameters of the buffer allocation mechanism, defined by

ADQBufferAddress.

ADQ_PARAMETER_ID_RUNTIME_CONFIGURATION (53)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 167 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQStatusId {
ADQ_STATUS_ID_RESERVED = 0,
ADQ_STATUS_ID_OVERFLOW = 1,
ADQ_STATUS_ID_DRAM = 2,
ADQ_STATUS_ID_ACQUISITION = 3,
ADQ_STATUS_ID_TEMPERATURE = 4,
ADQ_STATUS_ID_CLOCK_SYSTEM = 5,
ADQ_STATUS_ID_TIMESTAMP_SYNCHRONIZATION = 6,
ADQ_STATUS_ID_DAISY_CHAIN = 7,
ADQ_STATUS_ID_LICENSE = 8,
ADQ_STATUS_ID_DBS = 9

}

Description

An enumeration of the identification numbers used by the status query function GetStatus().

Values

ADQ_STATUS_ID_RESERVED (0)

Reserved

ADQ_STATUS_ID_OVERFLOW (1)

The identification number for the overflow status, defined by ADQOverflowStatus.

ADQ_STATUS_ID_DRAM (2)

The identification number for the DRAM status, defined by ADQDramStatus.

ADQ_STATUS_ID_ACQUISITION (3)

The identification number for the data acquisition status, defined by ADQAcquisitionStatus.

ADQ_STATUS_ID_TEMPERATURE (4)

The identification number for the status of the temperature sensors, defined by ADQTemperature-
Status.

ADQ_STATUS_ID_CLOCK_SYSTEM (5)

The identification number for the status of the clock system, defined by ADQClockSystemStatus.

ADQ_STATUS_ID_TIMESTAMP_SYNCHRONIZATION (6)

The identification number for the status of the timestamp synchronization, defined by

ADQTimestampSynchronizationStatus.

ADQ_STATUS_ID_DAISY_CHAIN (7)

The identification number for the status of the daisy chain, defined by ADQDaisyChainStatus.

ADQ_STATUS_ID_LICENSE (8)

The identification number for the status of the digitizer’s licenses, defined by ADQLicenseStatus.

ADQ3 Series Digitizers — User Guide spdevices.com Page 168 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_STATUS_ID_DBS (9)

The identification number for the status of the DBS signal processing module, defined by ADQDbs-
Status.

ADQ3 Series Digitizers — User Guide spdevices.com Page 169 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQEventSource {
ADQ_EVENT_SOURCE_INVALID = 0,
ADQ_EVENT_SOURCE_SOFTWARE = 1,
ADQ_EVENT_SOURCE_TRIG = 2,
ADQ_EVENT_SOURCE_LEVEL = 3,
ADQ_EVENT_SOURCE_PERIODIC = 4,
ADQ_EVENT_SOURCE_PXIE_STARB = 6,
ADQ_EVENT_SOURCE_TRIG2 = 7,
ADQ_EVENT_SOURCE_TRIG3 = 8,
ADQ_EVENT_SOURCE_SYNC = 9,
ADQ_EVENT_SOURCE_MTCA_MLVDS = 10,
ADQ_EVENT_SOURCE_TRIG_GATED_SYNC = 11,
ADQ_EVENT_SOURCE_TRIG_CLKREF_SYNC = 12,
ADQ_EVENT_SOURCE_MTCA_MLVDS_CLKREF_SYNC = 13,
ADQ_EVENT_SOURCE_PXI_TRIG = 14,
ADQ_EVENT_SOURCE_PXIE_STARB_CLKREF_SYNC = 16,
ADQ_EVENT_SOURCE_SYNC_CLKREF_SYNC = 19,
ADQ_EVENT_SOURCE_DAISY_CHAIN = 23,
ADQ_EVENT_SOURCE_SOFTWARE_CLKREF_SYNC = 24,
ADQ_EVENT_SOURCE_GPIOA0 = 25,
ADQ_EVENT_SOURCE_GPIOA1 = 26,
ADQ_EVENT_SOURCE_GPIOB0 = 60,
ADQ_EVENT_SOURCE_PXIE_TRIG0 = 90,
ADQ_EVENT_SOURCE_PXIE_TRIG1 = 91,
ADQ_EVENT_SOURCE_LEVEL_CHANNEL0 = 100,
ADQ_EVENT_SOURCE_LEVEL_CHANNEL1 = 101,
ADQ_EVENT_SOURCE_LEVEL_CHANNEL2 = 102,
ADQ_EVENT_SOURCE_LEVEL_CHANNEL3 = 103,
ADQ_EVENT_SOURCE_LEVEL_CHANNEL4 = 104,
ADQ_EVENT_SOURCE_LEVEL_CHANNEL5 = 105,
ADQ_EVENT_SOURCE_LEVEL_CHANNEL6 = 106,
ADQ_EVENT_SOURCE_LEVEL_CHANNEL7 = 107,
ADQ_EVENT_SOURCE_REFERENCE_CLOCK = 120,
ADQ_EVENT_SOURCE_MATRIX = 121,
ADQ_EVENT_SOURCE_LEVEL_MATRIX = 122,
ADQ_EVENT_SOURCE_PATTERN_GENERATOR0 = 123,
ADQ_EVENT_SOURCE_PATTERN_GENERATOR1 = 124

}

Description

An enumeration of the event sources which can be utilized by various functions of the digitizer, e.g. as a

source for trigger events in the data acquisition process (see Section 9). Not all digitizer models support

all the event sources. Refer to the ADQAPI reference guide [7] for more information.

ADQ3 Series Digitizers — User Guide spdevices.com Page 170 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Values

ADQ_EVENT_SOURCE_INVALID (0)

The invalid event source. This constant is commonly used to signal the absence of an event

source, often implying that the function is disabled.

ADQ_EVENT_SOURCE_SOFTWARE (1)

The software-controlled event source. A software event is issued by calling the function SWTrig().
It is not possible to guarantee or control the timing of the issued software event.

ADQ_EVENT_SOURCE_TRIG (2)

The event source associated with the TRIG port. The parameters for this event source is defined

by ADQEventSourcePortParameters with the struct identifier ADQ_PARAMETER_ID_EVENT_SOURCE_
TRIG.

ADQ_EVENT_SOURCE_LEVEL (3)

This constant specifies the signal level event source (Section 6.4) analyzing data from the channel

itself and is only applicable in contexts where its use is not ambiguous. For example, the channel-

specific data acquisition parameter trigger_sourcemay be set to this value, in which case these
two lines:

channel[0].trigger_source = ADQ_EVENT_SOURCE_LEVEL;
channel[1].trigger_source = ADQ_EVENT_SOURCE_LEVEL;

are equivalent to:

channel[0].trigger_source = ADQ_EVENT_SOURCE_LEVEL_CHANNEL0;
channel[1].trigger_source = ADQ_EVENT_SOURCE_LEVEL_CHANNEL1;

The parameters of these event sources are defined by ADQEventSourceLevelParameters.

ADQ_EVENT_SOURCE_PERIODIC (4)

The periodic event source, see Section 6.3 for more details. The parameters are defined by

ADQEventSourcePeriodicParameters.

ADQ_EVENT_SOURCE_PXIE_STARB (6)

The event source associated with the STARB signal in the PXIe port. Only digitizers with a PXIe

interface supports this event source.

ADQ_EVENT_SOURCE_TRIG2 (7)

Reserved

ADQ_EVENT_SOURCE_TRIG3 (8)

Reserved

ADQ_EVENT_SOURCE_SYNC (9)

The event source associated with the SYNC port. The parameters for this event source is defined

by ADQEventSourcePortParameters with the struct identifier ADQ_PARAMETER_ID_EVENT_SOURCE_

ADQ3 Series Digitizers — User Guide spdevices.com Page 171 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

SYNC.

ADQ_EVENT_SOURCE_MTCA_MLVDS (10)

Reserved

ADQ_EVENT_SOURCE_TRIG_GATED_SYNC (11)

Reserved

ADQ_EVENT_SOURCE_TRIG_CLKREF_SYNC (12)

Reserved

ADQ_EVENT_SOURCE_MTCA_MLVDS_CLKREF_SYNC (13)

Reserved

ADQ_EVENT_SOURCE_PXI_TRIG (14)

Reserved

ADQ_EVENT_SOURCE_PXIE_STARB_CLKREF_SYNC (16)

Reserved

ADQ_EVENT_SOURCE_SYNC_CLKREF_SYNC (19)

Reserved

ADQ_EVENT_SOURCE_DAISY_CHAIN (23)

Reserved

ADQ_EVENT_SOURCE_SOFTWARE_CLKREF_SYNC (24)

Reserved

ADQ_EVENT_SOURCE_GPIOA0 (25)

The event source associated with pin 0 of the GPIOA port. This port may be labelled differently

on the digitizer’s front panel. This event source is not associated with any parameters. It senses

a digital signal with the event threshold set to halfway between the logic low and logic high levels.

ADQ_EVENT_SOURCE_GPIOA1 (26)

Reserved

ADQ_EVENT_SOURCE_GPIOB0 (60)

The event source associated with pin 0 of the GPIOB port. This port may be labelled differently

on the digitizer’s front panel. This event source is not associated with any parameters. It senses

a digital signal with the event threshold set to halfway between the logic low and logic high levels.

ADQ_EVENT_SOURCE_PXIE_TRIG0 (90)

The event source associated with the TRIG0 signal in the PXIe port. Only digitizers with a PXIe

interface supports this event source.

ADQ3 Series Digitizers — User Guide spdevices.com Page 172 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_EVENT_SOURCE_PXIE_TRIG1 (91)

The event source associated with the TRIG1 signal in the PXIe port. Only digitizers with a PXIe

interface supports this event source.

ADQ_EVENT_SOURCE_LEVEL_CHANNEL0 (100)

The signal level event source analyzing data from channel 0. See Section 6.4 for more information.

ADQ_EVENT_SOURCE_LEVEL_CHANNEL1 (101)

The signal level event source analyzing data from channel 1. See Section 6.4 for more information.

ADQ_EVENT_SOURCE_LEVEL_CHANNEL2 (102)

The signal level event source analyzing data from channel 2. See Section 6.4 for more information.

ADQ_EVENT_SOURCE_LEVEL_CHANNEL3 (103)

The signal level event source analyzing data from channel 3. See Section 6.4 for more information.

ADQ_EVENT_SOURCE_LEVEL_CHANNEL4 (104)

The signal level event source analyzing data from channel 4. See Section 6.4 for more information.

ADQ_EVENT_SOURCE_LEVEL_CHANNEL5 (105)

The signal level event source analyzing data from channel 5. See Section 6.4 for more information.

ADQ_EVENT_SOURCE_LEVEL_CHANNEL6 (106)

The signal level event source analyzing data from channel 6. See Section 6.4 for more information.

ADQ_EVENT_SOURCE_LEVEL_CHANNEL7 (107)

The signal level event source analyzing data from channel 7. See Section 6.4 for more information.

ADQ_EVENT_SOURCE_REFERENCE_CLOCK (120)

The event source associated with the reference clock. Only the rising edge, i.e. ADQ_EDGE_
RISING, is supported by this event source. See Section 6.11 for more information.

ADQ_EVENT_SOURCE_MATRIX (121)

The event source used for triggering on a combination of the other event sources. Each source

can be individually configured to trigger on rising, falling or both edges, given that the underlying

event source supports those edges. See Section 6.10 for more information.

ADQ_EVENT_SOURCE_LEVEL_MATRIX (122)

The dedicated event source used to combine signal level events into a new event stream. For

example, the event source can be configured to output the rising edge events from channel A

together with both edge events from channel B. See Section 6.5 for more information.

ADQ_EVENT_SOURCE_PATTERN_GENERATOR0 (123)

The event source associated with pattern generator 0. See Section 7.1 for more information.

ADQ3 Series Digitizers — User Guide spdevices.com Page 173 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_EVENT_SOURCE_PATTERN_GENERATOR1 (124)

The event source associated with pattern generator 1. See Section 7.1 for more information.

enum ADQTestPatternSource {
ADQ_TEST_PATTERN_SOURCE_DISABLE = 0,
ADQ_TEST_PATTERN_SOURCE_COUNT_UP = 1,
ADQ_TEST_PATTERN_SOURCE_COUNT_DOWN = 2,
ADQ_TEST_PATTERN_SOURCE_TRIANGLE = 3,
ADQ_TEST_PATTERN_SOURCE_PULSE = 4,
ADQ_TEST_PATTERN_SOURCE_PULSE_PRBS_WIDTH = 5,
ADQ_TEST_PATTERN_SOURCE_PULSE_PRBS_AMPLITUDE = 6,
ADQ_TEST_PATTERN_SOURCE_PULSE_PRBS_WIDTH_AMPLITUDE = 7,
ADQ_TEST_PATTERN_SOURCE_PULSE_NOISE = 8,
ADQ_TEST_PATTERN_SOURCE_PULSE_NOISE_PRBS_WIDTH = 9,
ADQ_TEST_PATTERN_SOURCE_PULSE_NOISE_PRBS_AMPLITUDE = 10,
ADQ_TEST_PATTERN_SOURCE_PULSE_NOISE_PRBS_WIDTH_AMPLITUDE = 11

}

Description

An enumeration of the test pattern sources which can be used by the test pattern module (Section 11) to

replace the ADC data for a target channel.

Values

ADQ_TEST_PATTERN_SOURCE_DISABLE (0)

The test pattern generator is disabled.

ADQ_TEST_PATTERN_SOURCE_COUNT_UP (1)

A counter test pattern source with an upwards direction. The ADC data is replaced with a positive

sawtooth wave, wrapping to the largest negative value on overflow.

ADQ_TEST_PATTERN_SOURCE_COUNT_DOWN (2)

A counter test pattern source with a downwards direction. The ADC data is replaced with a neg-

ative sawtooth wave, wrapping to the largest positive value on underflow.

ADQ_TEST_PATTERN_SOURCE_TRIANGLE (3)

A counter test pattern source where the direction is alternating, inverting at the extreme values in

the vertical range. In other words: the ADC data is replaced with a triangle wave.

ADQ_TEST_PATTERN_SOURCE_PULSE (4)

Reserved

ADQ_TEST_PATTERN_SOURCE_PULSE_PRBS_WIDTH (5)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 174 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_TEST_PATTERN_SOURCE_PULSE_PRBS_AMPLITUDE (6)

Reserved

ADQ_TEST_PATTERN_SOURCE_PULSE_PRBS_WIDTH_AMPLITUDE (7)

Reserved

ADQ_TEST_PATTERN_SOURCE_PULSE_NOISE (8)

Reserved

ADQ_TEST_PATTERN_SOURCE_PULSE_NOISE_PRBS_WIDTH (9)

Reserved

ADQ_TEST_PATTERN_SOURCE_PULSE_NOISE_PRBS_AMPLITUDE (10)

Reserved

ADQ_TEST_PATTERN_SOURCE_PULSE_NOISE_PRBS_WIDTH_AMPLITUDE (11)

Reserved

enum ADQPort {
ADQ_PORT_TRIG = 0,
ADQ_PORT_SYNC = 1,
ADQ_PORT_SYNCO = 2,
ADQ_PORT_SYNCI = 3,
ADQ_PORT_CLK = 4,
ADQ_PORT_CLKI = 5,
ADQ_PORT_CLKO = 6,
ADQ_PORT_GPIOA = 7,
ADQ_PORT_GPIOB = 8,
ADQ_PORT_PXIE = 9,
ADQ_PORT_MTCA = 10,
ADQ_PORT_GPIOC = 11

}

Description

An enumeration of the digitizer’s ports (Section 8). Not all digitizer models feature every port in the list.

This enumeration is also intended to make the indexing of the port array more readable. For example,
it is recommended to write

struct ADQParameters adq;
adq.port[ADQ_PORT_SYNC].pin[0].direction = ADQ_DIRECTION_OUT;
adq.port[ADQ_PORT_SYNC].pin[0].function = ADQ_FUNCTION_GPIO;
adq.port[ADQ_PORT_SYNC].pin[0].invert_output = 0;
adq.port[ADQ_PORT_SYNC].pin[0].value = 1;

rather than

ADQ3 Series Digitizers — User Guide spdevices.com Page 175 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQParameters adq;
adq.port[1].pin[0].direction = ADQ_DIRECTION_OUT;
adq.port[1].pin[0].function = ADQ_FUNCTION_GPIO;
adq.port[1].pin[0].invert_output = 0;
adq.port[1].pin[0].value = 1;

Values

ADQ_PORT_TRIG (0)

A constant specifying the TRIG port.

ADQ_PORT_SYNC (1)

A constant specifying the SYNC port.

ADQ_PORT_SYNCO (2)

A constant specifying the SYNCO port. Unused on ADQ3 series digitizers.

ADQ_PORT_SYNCI (3)

A constant specifying the SYNCI port. Unused on ADQ3 series digitizers.

ADQ_PORT_CLK (4)

A constant specifying the CLK port.

ADQ_PORT_CLKI (5)

A constant specifying the CLKI port. Unused on ADQ3 series digitizers.

ADQ_PORT_CLKO (6)

A constant specifying the CLKO port. Unused on ADQ3 series digitizers.

ADQ_PORT_GPIOA (7)

The GPIOA port. On ADQ32, ADQ33 and ADQ35, this port is labeled “GPIO” on the front panel.

ADQ_PORT_GPIOB (8)

The GPIOB port. Refer to the product datasheet for pin mapping.

ADQ_PORT_PXIE (9)

Aconstant specifying the PXIe port. The pins in this port are named, see ADQPinPxie for additional
details.

ADQ_PORT_MTCA (10)

A constant specifying the MTCA port. Unused on ADQ3 series digitizers.

ADQ_PORT_GPIOC (11)

The GPIOC port. Refer to the product datasheet for pin mapping.

ADQ3 Series Digitizers — User Guide spdevices.com Page 176 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQPinPxie {
ADQ_PIN_PXIE_TRIG0 = 0,
ADQ_PIN_PXIE_TRIG1 = 1,
ADQ_PIN_PXIE_STARA = 2,
ADQ_PIN_PXIE_STARB = 3,
ADQ_PIN_PXIE_STARC = 4

}

Description

An enumeration of the pins in the PXIe port. Only digitizers with the PXIe interface have this port.

This enumeration is intended to make the indexing of the pin array more readable. For example, it is

recommended to write

struct ADQParameters adq;
adq.port[ADQ_PORT_PXIE].pin[ADQ_PIN_PXIE_STARC].direction = ADQ_DIRECTION_OUT;
adq.port[ADQ_PORT_PXIE].pin[ADQ_PIN_PXIE_STARC].function = ADQ_FUNCTION_GPIO;
adq.port[ADQ_PORT_PXIE].pin[ADQ_PIN_PXIE_STARC].invert_output = 0;
adq.port[ADQ_PORT_PXIE].pin[ADQ_PIN_PXIE_STARC].value = 1;

rather than

struct ADQParameters adq;
adq.port[9].pin[4].direction = ADQ_DIRECTION_OUT;
adq.port[9].pin[4].function = ADQ_FUNCTION_GPIO;
adq.port[9].pin[4].invert_output = 0;
adq.port[9].pin[4].value = 1;

Values

ADQ_PIN_PXIE_TRIG0 (0)

A constant specifying the PXI TRIG0 pin.

ADQ_PIN_PXIE_TRIG1 (1)

A constant specifying the PXI TRIG1 pin.

ADQ_PIN_PXIE_STARA (2)

A constant specifying the PXIe STARA pin.

ADQ_PIN_PXIE_STARB (3)

A constant specifying the PXIe STARB pin.

ADQ_PIN_PXIE_STARC (4)

A constant specifying the PXIe STARC pin.

ADQ3 Series Digitizers — User Guide spdevices.com Page 177 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQImpedance {
ADQ_IMPEDANCE_50_OHM = 0,
ADQ_IMPEDANCE_HIGH = 1,
ADQ_IMPEDANCE_100_OHM = 2

}

Description

An enumeration of the impedance values of the pins in the digitizer’s ports. See Section 8 for details.

Values

ADQ_IMPEDANCE_50_OHM (0)

This constant specifies 50 Ohm.

ADQ_IMPEDANCE_HIGH (1)

This constant specifies a high impedance. The impedance value may differ between ports. Refer

to the product datasheet [2] [3] [4] for typical values.

ADQ_IMPEDANCE_100_OHM (2)

This constant specifies 100 Ohm.

enum ADQDirection {
ADQ_DIRECTION_IN = 0,
ADQ_DIRECTION_OUT = 1,
ADQ_DIRECTION_INOUT = 2

}

Description

An enumeration of the direction values of the pins in the digitizer’s ports. See Section 8 for details.

Values

ADQ_DIRECTION_IN (0)

A constant specifying that the pin should be configured as an input.

ADQ_DIRECTION_OUT (1)

A constant specifying that the pin should be configured as an output.

ADQ_DIRECTION_INOUT (2)

A value used by the constant (read-only) parameter direction indicating that the corresponding
pin is bidirectional.

ADQ3 Series Digitizers — User Guide spdevices.com Page 178 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQEdge {
ADQ_EDGE_FALLING = 0,
ADQ_EDGE_RISING = 1,
ADQ_EDGE_BOTH = 2

}

Description

An enumeration of the edge selection for event sources. Not all event sources support edge selection,

e.g. ADQ_EVENT_SOURCE_SOFTWARE only supports ADQ_EDGE_RISING.

Values

ADQ_EDGE_FALLING (0)

A constant specifying falling edge sensitivity.

ADQ_EDGE_RISING (1)

A constant specifying rising edge sensitivity.

ADQ_EDGE_BOTH (2)

A constant specifying sensitivity to both edges.

enum ADQPolarity {
ADQ_POLARITY_INVALID = 0,
ADQ_POLARITY_NEGATIVE = 1,
ADQ_POLARITY_POSITIVE = 2

}

Description

An enumeration for polarity. The values are used to e.g. indicate the pulse polarity in an application with

unipolar pulse data. This is the target use case for the FWPD firmware and the associated PD signal

processing module, see Section 5.7.

Values

ADQ_POLARITY_INVALID (0)

The invalid polarity. This constant is commonly used to signal the absence of a polarity, often

implying that the function is disabled.

ADQ_POLARITY_NEGATIVE (1)

A constant specifying negative polarity.

ADQ_POLARITY_POSITIVE (2)

A constant specifying positive polarity.

ADQ3 Series Digitizers — User Guide spdevices.com Page 179 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQClockGenerator {
ADQ_CLOCK_GENERATOR_INTERNAL_PLL = 1,
ADQ_CLOCK_GENERATOR_EXTERNAL_CLOCK = 2

}

Description

An enumeration of the digitizer’s clock generation modes. See Section 4.1 for details.

Values

ADQ_CLOCK_GENERATOR_INTERNAL_PLL (1)

A constant specifying clock generation using the digitizer’s internal PLL.

ADQ_CLOCK_GENERATOR_EXTERNAL_CLOCK (2)

A constant specifying external clock generation, with the clock supplied via the CLK port.

enum ADQReferenceClockSource {
ADQ_REFERENCE_CLOCK_SOURCE_INTERNAL = 1,
ADQ_REFERENCE_CLOCK_SOURCE_PORT_CLK = 2,
ADQ_REFERENCE_CLOCK_SOURCE_PXIE_10M = 3,
ADQ_REFERENCE_CLOCK_SOURCE_MTCA_TCLKA = 4,
ADQ_REFERENCE_CLOCK_SOURCE_MTCA_TCLKB = 5,
ADQ_REFERENCE_CLOCK_SOURCE_PXIE_100M = 6

}

Description

An enumeration of the digitizer’s reference clock sources. Not all digitizers support every reference clock

source. See Section 4.2 for details.

Values

ADQ_REFERENCE_CLOCK_SOURCE_INTERNAL (1)

A constant specifying the internal reference clock.

ADQ_REFERENCE_CLOCK_SOURCE_PORT_CLK (2)

A constant specifying an external reference clock supplied via the CLK port.

ADQ_REFERENCE_CLOCK_SOURCE_PXIE_10M (3)

A constant specifying the 10 MHz reference clock in a PXIe backplane. Only available for PXIe

form factor digitizers.

ADQ_REFERENCE_CLOCK_SOURCE_MTCA_TCLKA (4)

A constant specifying the TCLKA reference clock in a MicroTCA backplane. Only available for

MTCA form factor digitizers.

ADQ3 Series Digitizers — User Guide spdevices.com Page 180 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_REFERENCE_CLOCK_SOURCE_MTCA_TCLKB (5)

A constant specifying the TCLKB reference clock in a MicroTCA backplane. Only available for

MTCA form factor digitizers.

ADQ_REFERENCE_CLOCK_SOURCE_PXIE_100M (6)

A constant specifying the 100 MHz reference clock in a PXIe backplane. Only available for PXIe

form factor digitizers.

enum ADQFunction {
ADQ_FUNCTION_INVALID = 0,
ADQ_FUNCTION_PATTERN_GENERATOR0 = 1,
ADQ_FUNCTION_PATTERN_GENERATOR1 = 2,
ADQ_FUNCTION_GPIO = 3,
ADQ_FUNCTION_PULSE_GENERATOR0 = 4,
ADQ_FUNCTION_PULSE_GENERATOR1 = 5,
ADQ_FUNCTION_PULSE_GENERATOR2 = 6,
ADQ_FUNCTION_PULSE_GENERATOR3 = 7,
ADQ_FUNCTION_TIMESTAMP_SYNCHRONIZATION = 8,
ADQ_FUNCTION_USER_LOGIC = 9,
ADQ_FUNCTION_DAISY_CHAIN = 10,
ADQ_FUNCTION_RECORD_STOP = 11,
ADQ_FUNCTION_FRACTIONAL_N_PLL = 12

}

Description

An enumeration of the digitizer’s function modules. See Section 7 for details.

Values

ADQ_FUNCTION_INVALID (0)

A constant specifying an invalid function module. This value is commonly used to signal the

absence of a function.

ADQ_FUNCTION_PATTERN_GENERATOR0 (1)

A constant specifying the first pattern generator module.

ADQ_FUNCTION_PATTERN_GENERATOR1 (2)

A constant specifying the second pattern generator module.

ADQ_FUNCTION_GPIO (3)

A constant specifying GPIO functionality.

ADQ_FUNCTION_PULSE_GENERATOR0 (4)

A constant specifying the first pattern generator module.

ADQ3 Series Digitizers — User Guide spdevices.com Page 181 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_FUNCTION_PULSE_GENERATOR1 (5)

A constant specifying the second pattern generator module.

ADQ_FUNCTION_PULSE_GENERATOR2 (6)

A constant specifying the third pattern generator module.

ADQ_FUNCTION_PULSE_GENERATOR3 (7)

A constant specifying the fourth pattern generator module.

ADQ_FUNCTION_TIMESTAMP_SYNCHRONIZATION (8)

A constant specifying the timestamp synchronization function.

ADQ_FUNCTION_USER_LOGIC (9)

A constant specifying that the pin is controlled from the user logic. For more information, refer to

the development kit user guide [8]).

ADQ_FUNCTION_DAISY_CHAIN (10)

A constant specifying the daisy chain function.

ADQ_FUNCTION_RECORD_STOP (11)

A constant specifying a signal that is pulsed at the end of a record.

ADQ_FUNCTION_FRACTIONAL_N_PLL (12)

A constant specifying the fractional-N PLL function.

enum ADQPatternGeneratorOperation {
ADQ_PATTERN_GENERATOR_OPERATION_TIMER = 0,
ADQ_PATTERN_GENERATOR_OPERATION_EVENT = 1

}

Description

An enumeration of the operation specified in a pattern generator instruction (op). See Section 7.1 for

details.

Values

ADQ_PATTERN_GENERATOR_OPERATION_TIMER (0)

A constant specifying the timer operation. See Section 7.1.1 for details.

ADQ_PATTERN_GENERATOR_OPERATION_EVENT (1)

A constant specifying the event operation. See Section 7.1.1 for details.

ADQ3 Series Digitizers — User Guide spdevices.com Page 182 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQMarkerMode {
ADQ_MARKER_MODE_HOST_AUTO = 0,
ADQ_MARKER_MODE_HOST_MANUAL = 1,
ADQ_MARKER_MODE_USER_ADDR = 2

}

Description

An enumeration of the marker mode, i.e. how the data transfer process should handle the markers. See

Section 10 for details.

Values

ADQ_MARKER_MODE_HOST_AUTO (0)

Aconstant specifying that the markers are handled automatically by the host computer, out of sight

from the user application. This mode implies the use of WaitForRecordBuffer() and Return-
RecordBuffer() to read out data from the digitizer.

ADQ_MARKER_MODE_HOST_MANUAL (1)

A constant specifying that the markers are manually handled by the user. This mode implies the

use of WaitForP2pBuffers() and UnlockP2pBuffers() to read out data from the digitizer.

ADQ_MARKER_MODE_USER_ADDR (2)

A constant specifying that the markers are transferred to the user specified marker_buffer_bus_
address. This mode implies that the host computer RAM is not the target endpoint of the data

transfer process. See Section 10 for more information.

enum ADQMemoryOwner {
ADQ_MEMORY_OWNER_API = 0,
ADQ_MEMORY_OWNER_USER = 1

}

Description

An enumeration of the memory ownership modes used by the API.

Values

ADQ_MEMORY_OWNER_API (0)

A constant signifying that memory is owned by the API.

ADQ_MEMORY_OWNER_USER (1)

A constant signifying that memory is owned by the user.

ADQ3 Series Digitizers — User Guide spdevices.com Page 183 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQSynchronizationMode {
ADQ_SYNCHRONIZATION_MODE_DISABLE = 0,
ADQ_SYNCHRONIZATION_MODE_FIRST = 1,
ADQ_SYNCHRONIZATION_MODE_ALL = 2

}

Description

An enumeration of the synchronization modes.

Values

ADQ_SYNCHRONIZATION_MODE_DISABLE (0)

A constant specifying that the synchronization should be disabled.

ADQ_SYNCHRONIZATION_MODE_FIRST (1)

A constant specifying that the synchronization should be on the first event.

ADQ_SYNCHRONIZATION_MODE_ALL (2)

A constant specifying that the synchronixation should be on every event.

enum ADQArm {
ADQ_ARM_IMMEDIATELY = 0,
ADQ_ARM_AT_ACQUISITION_START = 1

}

Description

An enumeration specifying when the function should be armed.

Values

ADQ_ARM_IMMEDIATELY (0)

A constant specifying that the function should be armed in the call to SetParameters().

ADQ_ARM_AT_ACQUISITION_START (1)

A constant specifying that the function should be armed in the call to StartDataAcquisition().

enum ADQFirmwareType {
ADQ_FIRMWARE_TYPE_INVALID = 0,
ADQ_FIRMWARE_TYPE_FWDAQ = 1,
ADQ_FIRMWARE_TYPE_FWATD = 2,
ADQ_FIRMWARE_TYPE_FWPD = 3

}

Description

An enumeration of the firmware types.

ADQ3 Series Digitizers — User Guide spdevices.com Page 184 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Values

ADQ_FIRMWARE_TYPE_INVALID (0)

A constant specifying an invalid or unknown firmware type.

ADQ_FIRMWARE_TYPE_FWDAQ (1)

A constant specifying a FWDAQ firmware.

ADQ_FIRMWARE_TYPE_FWATD (2)

A constant specifying a FWATD firmware.

ADQ_FIRMWARE_TYPE_FWPD (3)

A constant specifying a FWPD firmware.

enum ADQCommunicationInterface {
ADQ_COMMUNICATION_INTERFACE_INVALID = 0,
ADQ_COMMUNICATION_INTERFACE_PCIE = 1,
ADQ_COMMUNICATION_INTERFACE_USB = 2

}

Description

An enumeration of the communication interfaces.

Values

ADQ_COMMUNICATION_INTERFACE_INVALID (0)

A constant specifying an invalid or unknown communication interface.

ADQ_COMMUNICATION_INTERFACE_PCIE (1)

A constant specifying a PCI-express communication interface.

ADQ_COMMUNICATION_INTERFACE_USB (2)

A constant specifying a USB communication interface.

enum ADQCoefficientFormat {
ADQ_COEFFICIENT_FORMAT_DOUBLE = 0,
ADQ_COEFFICIENT_FORMAT_FIXED_POINT = 1

}

Description

An enumeration of the coefficient formats that can be used when setting the coefficient values of the FIR

filter (Section 5.4).

ADQ3 Series Digitizers — User Guide spdevices.com Page 185 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Values

ADQ_COEFFICIENT_FORMAT_DOUBLE (0)

Aconstant specifying double-precision floating point numbers as the coefficient format. When this

format is used, values from the coefficient array are rounded and written to the filter.

ADQ_COEFFICIENT_FORMAT_FIXED_POINT (1)

A constant specifying fixed point numbers as the coefficient format. When this format is used,

values from the coefficient_fixed_point array are rounded and written to the filter.

enum ADQRoundingMethod {
ADQ_ROUNDING_METHOD_TIE_AWAY_FROM_ZERO = 0,
ADQ_ROUNDING_METHOD_TIE_TOWARDS_ZERO = 1,
ADQ_ROUNDING_METHOD_TIE_TO_EVEN = 2

}

Description

An enumeration of the rounding methods that can be used when setting the coefficient values of the FIR

filter using the ADQ_COEFFICIENT_FORMAT_DOUBLE coefficient format. All rounding methods round to the
nearest integer, but differ in the way tie breaks are handled.

Values

ADQ_ROUNDING_METHOD_TIE_AWAY_FROM_ZERO (0)

A constant specifying the rounding method where tie breaks are rounded away from zero, e.g.

−10.5 is rounded to −11 and 10.5 is rounded to 11.

ADQ_ROUNDING_METHOD_TIE_TOWARDS_ZERO (1)

Aconstant specifying the rounding method where tie breaks are rounded towards zero, e.g. −10.5
is rounded to −10 and 10.5 is rounded to 10.

ADQ_ROUNDING_METHOD_TIE_TO_EVEN (2)

A constant specifying the rounding method where tie breaks are rounded to the nearest even

integer, e.g. 10.5 is rounded to 10 and 11.5 is rounded to 12.

enum ADQUserLogic {
ADQ_USER_LOGIC_RESERVED = 0,
ADQ_USER_LOGIC1 = 1,
ADQ_USER_LOGIC2 = 2

}

Description

An enumeration of the user logic areas.

ADQ3 Series Digitizers — User Guide spdevices.com Page 186 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Values

ADQ_USER_LOGIC_RESERVED (0)

Reserved.

ADQ_USER_LOGIC1 (1)

A constant specifying user logic area 1.

ADQ_USER_LOGIC2 (2)

A constant specifying user logic area 2.

enum ADQEeprom {
ADQ_EEPROM_INVALID = 0,
ADQ_EEPROM_MOTHERBOARD = 1,
ADQ_EEPROM_DAUGHTERBOARD = 2,
ADQ_EEPROM_USER = 3

}

Description

An enumeration of the EEPROM areas.

Values

ADQ_EEPROM_INVALID (0)

Reserved.

ADQ_EEPROM_MOTHERBOARD (1)

A constant specifying the motherboard’s EEPROM.

ADQ_EEPROM_DAUGHTERBOARD (2)

A constant specifying the daughterboard’s EEPROM.

ADQ_EEPROM_USER (3)

A constant specifying the user’s EEPROM area.

ADQ3 Series Digitizers — User Guide spdevices.com Page 187 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQHWIFEnum {
HWIF_USB = 0,
HWIF_PCIE = 1,
HWIF_USB3 = 2,
HWIF_PCIELITE = 3,
HWIF_ETH_ADQ7 = 4,
HWIF_ETH_ADQ14 = 5,
HWIF_QPCIE = 7,
HWIF_OTHER = 8

}

Description

An enumeration of the hardware interfaces, used in ADQControlUnit_ListDevices().

ADQ3 Series Digitizers — User Guide spdevices.com Page 188 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQProductID_Enum {
PID_ADQ214 = 0x0001,
PID_ADQ114 = 0x0003,
PID_ADQ112 = 0x0005,
PID_SphinxHS = 0x000B,
PID_SphinxLS = 0x000C,
PID_ADQ108 = 0x000E,
PID_ADQDSP = 0x000F,
PID_SphinxAA14 = 0x0011,
PID_SphinxAA16 = 0x0012,
PID_ADQ412 = 0x0014,
PID_ADQ212 = 0x0015,
PID_SphinxAA_LS2 = 0x0016,
PID_SphinxHS_LS2 = 0x0017,
PID_SDR14 = 0x001B,
PID_ADQ1600 = 0x001C,
PID_SphinxXT = 0x001D,
PID_ADQ208 = 0x001E,
PID_DSU = 0x001F,
PID_ADQ14 = 0x0020,
PID_EV12AS350_EVM = 0x0022,
PID_ADQ7 = 0x0023,
PID_ADQ8 = 0x0026,
PID_ADQ12 = 0x0027,
PID_ADQ32 = 0x0031,
PID_ADQSM = 0x0032,
PID_ADQ36 = 0x0033,
PID_ADQ30 = 0x0034,
PID_ADQ35 = 0x0035

}

Description

An enumeration of the product IDs.

ADQ3 Series Digitizers — User Guide spdevices.com Page 189 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQAnalogInput {
ADQ_ANALOG_INPUT_INVALID = 0,
ADQ_ANALOG_INPUT_A = 1,
ADQ_ANALOG_INPUT_B = 2,
ADQ_ANALOG_INPUT_C = 3,
ADQ_ANALOG_INPUT_D = 4,
ADQ_ANALOG_INPUT_E = 5,
ADQ_ANALOG_INPUT_F = 6,
ADQ_ANALOG_INPUT_G = 7,
ADQ_ANALOG_INPUT_H = 8

}

Description

An enumeration of the analog inputs of a digitizer.

Values

ADQ_ANALOG_INPUT_INVALID (0)

A constant specifying an invalid analog input.

ADQ_ANALOG_INPUT_A (1)

A constant specifying the analog input labeled A.

ADQ_ANALOG_INPUT_B (2)

A constant specifying the analog input labeled B.

ADQ_ANALOG_INPUT_C (3)

A constant specifying the analog input labeled C.

ADQ_ANALOG_INPUT_D (4)

A constant specifying the analog input labeled D.

ADQ_ANALOG_INPUT_E (5)

A constant specifying the analog input labeled E.

ADQ_ANALOG_INPUT_F (6)

A constant specifying the analog input labeled F.

ADQ_ANALOG_INPUT_G (7)

A constant specifying the analog input labeled G.

ADQ_ANALOG_INPUT_H (8)

A constant specifying the analog input labeled H.

ADQ3 Series Digitizers — User Guide spdevices.com Page 190 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

enum ADQFanMode {
ADQ_FAN_MODE_AUTO = 0,
ADQ_FAN_MODE_CONSTANT = 1

}

Description

An enumeration specifying the fan mode.

Values

ADQ_FAN_MODE_AUTO (0)

A constant specifying automatic fan control.

ADQ_FAN_MODE_CONSTANT (1)

A constant specifying that the fan should be running with a constant speed.

enum ADQBufferAction {
ADQ_BUFFER_ACTION_HUGEPAGE_MMAP = 0,
ADQ_BUFFER_ACTION_HUGEPAGE_MUNMAP = 1,
ADQ_BUFFER_ACTION_HUGEPAGE_LOOKUP = 1

}

Description

An enumeration of the buffer actions used by the API.

Values

ADQ_BUFFER_ACTION_HUGEPAGE_MMAP (0)

A constant signifying that the hugepage should be allocated by API.

ADQ_BUFFER_ACTION_HUGEPAGE_MUNMAP (1)

A constant signifying that the hugepage should be freed by API.

ADQ_BUFFER_ACTION_HUGEPAGE_LOOKUP (1)

A constant signifying that the bus address of hugepage should be looked up from the virtual ad-

dress provided by the user.

ADQ3 Series Digitizers — User Guide spdevices.com Page 191 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.3 Structures

This section lists the data structures used when configuring and controlling the digitizer. These are de-

fined in the ADQAPI header file ADQAPI.h and versioned by the two constants ADQAPI_VERSION_MAJOR
and ADQAPI_VERSION_MAJOR. See ADQAPI_ValidateVersion() for more information about how to imple-

ment version validation in the user application space.

Initialization Parameters . 195

ADQClockSystemParameters . 195

ADQInputRoutingParameters . 196

ADQInputRoutingParametersChannel . 197

Configuration Parameters . 198

ADQParameters . 198

ADQAnalogFrontendParameters . 199

ADQAnalogFrontendParametersChannel . 200

ADQAtdParameters . 201

ADQAtdParametersCommon . 201

ADQAtdParametersChannel . 202

ADQAtdParametersChannelThresholdFilter . 203

ADQConstantParameters . 204

ADQConstantParametersChannel . 207

ADQConstantParametersPort . 208

ADQConstantParametersPin . 209

ADQConstantParametersFirmware . 209

ADQConstantParametersCommunicationInterface 210

ADQConstantParametersFirFilter . 211

ADQConstantParametersPdrx . 211

ADQConstantParametersAtd . 212

ADQConstantParametersAtdThresholdFilter . 212

ADQConstantParametersPd . 213

ADQDaisyChainParameters . 213

ADQDataAcquisitionParameters . 215

ADQDataAcquisitionParametersCommon . 215

ADQDataAcquisitionParametersChannel . 216

ADQDataTransferParameters . 220

ADQDataTransferParametersCommon . 221

ADQDataTransferParametersChannel . 225

ADQDataReadoutParameters . 229

ADQDataReadoutParametersCommon . 230

ADQDataReadoutParametersChannel . 230

ADQDbsParameters . 232

ADQDbsParametersChannel . 233

ADQDigitalGainAndOffsetParameters . 236

ADQDigitalGainAndOffsetParametersChannel . 237

ADQEventSourceParameters . 237

ADQ3 Series Digitizers — User Guide spdevices.com Page 192 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQEventSourceLevelParameters . 238

ADQEventSourceLevelParametersChannel . 239

ADQEventSourceLevelMatrixParameters . 239

ADQEventSourceLevelMatrixParametersChannel 240

ADQEventSourcePeriodicParameters . 241

ADQEventSourceSoftwareParameters . 243

ADQEventSourcePortParameters . 244

ADQEventSourcePortParametersPin . 245

ADQEventSourceMatrixParameters . 245

ADQEventSourceMatrixParametersInput . 246

ADQFirFilterParameters . 247

ADQFirFilterParametersChannel . 247

ADQFunctionParameters . 248

ADQFractionalNPllParameters . 249

ADQPatternGeneratorParameters . 250

ADQPatternGeneratorInstruction . 251

ADQPdParameters . 253

ADQPdParametersChannel . 254

ADQPdrxParameters . 255

ADQPdrxParametersChannel . 256

ADQPortParameters . 258

ADQPortParametersPin . 259

ADQPulseGeneratorParameters . 260

ADQSampleSkipParameters . 262

ADQSampleSkipParametersChannel . 262

ADQSignalProcessingParameters . 263

ADQTestPatternParameters . 265

ADQTestPatternParametersChannel . 265

ADQTestPatternParametersPulse . 266

ADQTimestampSynchronizationParameters . 266

ADQSystemManagerParameters . 268

ADQBufferAddress . 269

Status . 271

ADQAcquisitionStatus . 271

ADQDataReadoutStatus . 271

ADQDramStatus . 272

ADQOverflowStatus . 272

ADQP2pStatus . 272

ADQP2pStatusChannel . 273

ADQTemperatureStatus . 274

ADQTemperatureStatusSensor . 274

ADQClockSystemStatus . 275

ADQClockSystemStatusPll . 276

ADQTimestampSynchronizationStatus . 276

ADQ3 Series Digitizers — User Guide spdevices.com Page 193 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQDaisyChainStatus . 277

ADQLicenseStatus . 277

ADQDbsStatus . 278

ADQDbsStatusChannel . 278

Data . 280

ADQGen4Record . 280

ADQGen4RecordHeader . 281

ADQGen4RecordArray . 285

ADQPulseAttributes . 285

ADQ3 Series Digitizers — User Guide spdevices.com Page 194 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.3.1 Initialization Parameters

This section lists the structures used to configure the digitizer during the initialization phase. See Sec-

tion 15.4 for a description of the context in which these objects are used.

struct ADQClockSystemParameters {
enum ADQParameterId id;
int32_t reserved;
enum ADQClockGenerator clock_generator;
enum ADQReferenceClockSource reference_source;
double sampling_frequency;
double reference_frequency;
double delay_adjustment;
int32_t low_jitter_mode_enabled;
int32_t delay_adjustment_enabled;
uint64_t magic;

}

Description

This struct defines the parameters of the digitizer’s clock system and is used during the initialization

phase (Section 15.4). See Section 4 for a high-level description of the clock system.

After initialization, the struct can be found as a member of the read-only constant parameters, where
it holds the current clock system configuration.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_CLOCK_
SYSTEM. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

clock_generator (enum ADQClockGenerator)

An ADQClockGenerator that will be used to generate the sampling frequency clocks of the digitizer.
The default value is ADQ_CLOCK_GENERATOR_INTERNAL_PLL. Valid values are:

• ADQ_CLOCK_GENERATOR_INTERNAL_PLL
• ADQ_CLOCK_GENERATOR_EXTERNAL_CLOCK

See Section 4.1 for a high-level description of the alternatives.

reference_source (enum ADQReferenceClockSource)

An ADQReferenceClockSource that will be used as reference clock for the internal PLL of the digi-
tizer, assuming the clock_generator is set to ADQ_CLOCK_GENERATOR_INTERNAL_PLL. The default
value is ADQ_REFERENCE_CLOCK_SOURCE_INTERNAL. Valid values are:

ADQ3 Series Digitizers — User Guide spdevices.com Page 195 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• ADQ_REFERENCE_CLOCK_SOURCE_INTERNAL
• ADQ_REFERENCE_CLOCK_SOURCE_PORT_CLK
• ADQ_REFERENCE_CLOCK_SOURCE_PXIE_10M (only ADQ36-PXIe)

See Section 4.2 for a high-level description of the alternatives.

sampling_frequency (double)

The desired sampling frequency, in units of Hz.

reference_frequency (double)

The supplied reference frequency, in units of Hz.

delay_adjustment (double)

The desired reference clock delay adjustment, in units of seconds. Requires that delay_
adjustment_enabled is set to take effect.

low_jitter_mode_enabled (int32_t)

Enable or disable the low jitter mode of the internal PLL. See Section 4 for a high-level description

of the low-jitter mode.

delay_adjustment_enabled (int32_t)

Enable or disable the reference clock delay adjustment. See Section 4 for a high-level description

of the delay adjustment feature.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQInputRoutingParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQInputRoutingParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters that determine which analog input is connected to which digitizer

channel.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_INPUT_
ROUTING. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 196 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQInputRoutingParametersChannel)

An array of ADQInputRoutingParametersChannel structs where each element represents the pa-
rameters for a channel. The struct at index zero targets the first channel. The constant parameter

nof_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQInputRoutingParametersChannel {
enum ADQAnalogInput input;
int32_t reserved;

}

Description

This struct is a member of ADQInputRoutingParameters and defines the input routing parameters for a
channel.

Members

input (enum ADQAnalogInput)

The analog input connected to this digitizer channel. Channels that are not present in the digitizer

firmware must have this field set to ADQ_ANALOG_INPUT_INVALID.

reserved (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 197 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.3.2 Configuration Parameters

This section lists the structures used to configure the digitizer before initiating the acquisition process.

See Section 15.5 for a description of the context in which these objects are used.

struct ADQParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQConstantParameters constant;
struct ADQAnalogFrontendParameters afe;
struct ADQPortParameters port[ADQ_MAX_NOF_PORTS];
struct ADQEventSourceParameters event_source;
struct ADQFunctionParameters function;
struct ADQTestPatternParameters test_pattern;
struct ADQSignalProcessingParameters signal_processing;
struct ADQDataAcquisitionParameters acquisition;
struct ADQDataTransferParameters transfer;
struct ADQDataReadoutParameters readout;
uint64_t magic;

}

Description

This struct defines the entire parameter space of the digitizer. This means that each member struct is

also an object that may interact with the configuration functions separately (see Section A.4.3).

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_TOP. This
is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

constant (struct ADQConstantParameters)

An ADQConstantParameters struct holding the constant parameters, i.e. parameters that cannot
bemodified. These include values such as the number of channels, each channel’s base sampling

rate, various labels and other useful properties of the digitizer.

afe (struct ADQAnalogFrontendParameters)

An ADQAnalogFrontendParameters struct holding the parameters of the analog front-end for all

the channels of the digitizer. See Section 2 for a high-level description.

port[ADQ_MAX_NOF_PORTS] (struct ADQPortParameters)

An array of ADQPortParameters structs where each entry holds the parameters of a specific port.
The array is intended to be indexed by using the enumeration ADQPort. See Section 8 for a

ADQ3 Series Digitizers — User Guide spdevices.com Page 198 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

high-level description.

event_source (struct ADQEventSourceParameters)

An ADQEventSourceParameters struct holding the parameters of the digitizer’s event sources.

See Section 6 for a high-level description.

function (struct ADQFunctionParameters)

An ADQFunctionParameters struct holding the parameters of the digitizer’s function modules. See
Section 7 for a high-level description.

test_pattern (struct ADQTestPatternParameters)

An ADQTestPatternParameters struct holding the parameters of the digitizer’s test pattern gen-
erator. See Section 11 for a high-level description.

signal_processing (struct ADQSignalProcessingParameters)

An ADQSignalProcessingParameters struct holding the parameters of the digitizer’s signal pro-
cessing modules. See Section 5 for a high-level description of these modules.

acquisition (struct ADQDataAcquisitionParameters)

An ADQDataAcquisitionParameters struct holding the parameters of the data acquisition pro-

cess. See Section 9 for a high-level description.

transfer (struct ADQDataTransferParameters)

An ADQDataTransferParameters struct holding the parameters of the data transfer process. See
Section 10 for a high-level description.

readout (struct ADQDataReadoutParameters)

An ADQDataReadoutParameters struct holding the parameters of the data readout process. See
Section 10 for a high-level description.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQAnalogFrontendParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQAnalogFrontendParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the analog front-end for all channels of the digitizer. See Section 2

for a high-level description.

ADQ3 Series Digitizers — User Guide spdevices.com Page 199 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_ANALOG_
FRONTEND. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQAnalogFrontendParametersChannel)

An array of ADQAnalogFrontendParametersChannel structs where each element represents the
parameters for a channel. The struct at index zero targets the first channel. The constant param-

eter nof_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQAnalogFrontendParametersChannel {
double input_range;
double dc_offset;

}

Description

This struct is a member of ADQAnalogFrontendParameters and defines analog front-end parameters for
a channel.

Members

input_range (double)

The channel’s input range in millivolts. The default value depends on the digitizer model.

dc_offset (double)

The channel’s analog DC offset in millivolts. The default value is zero.

ADQ3 Series Digitizers — User Guide spdevices.com Page 200 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQAtdParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQAtdParametersCommon common;
struct ADQAtdParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the ATD signal processing module for all channels of the digitizer.

See Section 5.6 for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_ATD. This
is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

common (struct ADQAtdParametersCommon)

A ADQAtdParametersCommon struct holding the ATD signal processing module parameters that

apply to all channels.

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQAtdParametersChannel)

An array of ADQAtdParametersChannel structs where each element represents the parameters

for a channel. The struct at index zero targets the first channel. The constant parameter nof_
transfer_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQAtdParametersCommon {
int64_t nof_accumulations;
enum ADQFunction accumulation_grid_synchronization_source;
int32_t reserved;

}

Description

This struct is a member of ADQAtdParameters and defines theATD signal processing module parameters

for all channels.

ADQ3 Series Digitizers — User Guide spdevices.com Page 201 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

nof_accumulations (int64_t)

Number of records to accumulate before outputting the accumulated result as a record to the user.

accumulation_grid_synchronization_source (enum ADQFunction)

The accumulation grid synchronization source. See Section 5.6.5 for a high-level description.

Valid values are:

• ADQ_FUNCTION_INVALID
• ADQ_FUNCTION_PATTERN_GENERATOR0
• ADQ_FUNCTION_PATTERN_GENERATOR1

The default value is ADQ_FUNCTION_INVALID which implies that the grid synchronization mecha-
nism is not active.

reserved (int32_t)

Reserved

struct ADQAtdParametersChannel {
struct ADQAtdParametersChannelThresholdFilter threshold_filter;

}

Description

This struct is a member of ADQAtdParameters and defines theATD signal processing module parameters

for a channel.

Members

threshold_filter (struct ADQAtdParametersChannelThresholdFilter)

A ADQAtdParametersChannelThresholdFilter struct holding the threshold filter parameters for

the channel.

ADQ3 Series Digitizers — User Guide spdevices.com Page 202 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQAtdParametersChannelThresholdFilter {
int32_t enabled;
enum ADQPolarity polarity;
enum ADQRoundingMethod rounding_method;
enum ADQCoefficientFormat format;
int64_t level;
int64_t baseline;
double coefficient[ADQ_MAX_NOF_ATD_THRESHOLD_FILTER_COEFFICIENTS];
int32_t coefficient_fixed_point[ADQ_MAX_NOF_ATD_THRESHOLD_FILTER_COEFFICIENTS];
int32_t reserved;

}

Description

This struct is a member of ADQAtdParameters and defines threshold filter parameters for the ATD signal

processing module.

Members

enabled (int32_t)

Set this parameter to a nonzero value to enable the ATD signal processing module threshold filter

(Section 5.6.3.) Depending on the polarity, samples above or below the threshold level will
be set to the baseline value.

polarity (enum ADQPolarity)

Threshold polarity for the ATD signal processing module threshold filter. With ADQ_POLARITY_
NEGATIVE, samples with values below the level will pass through unchanged, while samples with
values over the level are set to the baseline value. With ADQ_POLARITY_POSITIVE, samples
with values above the level will pass through unchanged, while samples with values under the
level are set to the baseline value.

rounding_method (enum ADQRoundingMethod) � Write-only

The rounding method that is used to convert the floating point values in the coefficient array to
the fixed point precision of the filter. The default value is ADQ_ROUNDING_METHOD_TIE_AWAY_FROM_
ZERO. This parameter is write-only.

format (enum ADQCoefficientFormat) � Write-only

The coefficient format to use when setting the threshold filter coefficients. Refer to the enumeration

ADQCoefficientFormat for more information. The default value is ADQ_COEFFICIENT_FORMAT_
DOUBLE. This parameter is write-only.

level (int64_t)

Threshold level for the ATD signal processing module threshold filter. The threshold level is spec-

ified as ADC codes with valid range of [−215,215 − 1]

baseline (int64_t)

Baseline level for theATD signal processing module threshold filter. The baseline level is specified

ADQ3 Series Digitizers — User Guide spdevices.com Page 203 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

as ADC codes with valid range of [−215,215 − 1]

coefficient[ADQ_MAX_NOF_ATD_THRESHOLD_FILTER_COEFFICIENTS] (double)

The threshold filter coefficients, in double-precision floating point format. When setting the param-

eters of the filter, this array is only used if the format is set to ADQ_COEFFICIENT_FORMAT_DOUBLE.
The default values are set so the filter acts as a bypass.

coefficient_fixed_point[ADQ_MAX_NOF_ATD_THRESHOLD_FILTER_COEFFICIENTS] (int32_t)

The threshold filter coefficients, in fixed point format. When setting the parameters of the filter,

this array is only used if the format is set to ADQ_COEFFICIENT_FORMAT_FIXED_POINT. The default
values are set so the filter acts as a bypass.

reserved (int32_t)

Reserved

struct ADQConstantParameters {
enum ADQParameterId id;
int32_t nof_channels;
int32_t nof_acquisition_channels;
int32_t nof_transfer_channels;
int32_t nof_pattern_generators;
int32_t max_nof_pattern_generator_instructions;
int32_t nof_pulse_generators;
int32_t nof_matrix_inputs;
char dna[40];
char serial_number[16];
char product_name[32];
char product_options[32];
struct ADQConstantParametersFirmware firmware;
struct ADQClockSystemParameters clock_system;
struct ADQConstantParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
struct ADQConstantParametersPort port[ADQ_MAX_NOF_PORTS];
struct ADQConstantParametersCommunicationInterface communication_interface;
uint64_t eeprom_user_area_size;
uint64_t dram_size;
int32_t record_buffer_size_step;
uint64_t magic;

}

Description

This struct defines the constant parameters of the digitizer, i.e. parameters that cannot be modified by

the user. It offers a way to programatically query information about the digitizer.

ADQ3 Series Digitizers — User Guide spdevices.com Page 204 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_
CONSTANT. This is guaranteed if InitializeParameters() is called to initialize the parameter

set.

nof_channels (int32_t)

The number of physical channels.

nof_acquisition_channels (int32_t)

The number of acquisition channels.

nof_transfer_channels (int32_t)

The number of transfer channels.

nof_pattern_generators (int32_t)

The number of pattern generators. See Section 7.1 for details.

max_nof_pattern_generator_instructions (int32_t)

The maximum number of pattern generator instructions. See Section 7.1 for details.

nof_pulse_generators (int32_t)

The number of pulse generators. See Section 7.2 for details.

nof_matrix_inputs (int32_t)

The number of inputs to the matrix event source. See Section 6.10 for details.

dna[40] (char)
The digitizer’s DNA as a zero-terminated array of ASCII characters, i.e. a C-string. For example,

”0x000000001234ABCD”. This value is a unique identifier that may be requested by TSPD support

staff.

serial_number[16] (char)

The serial number as a zero-terminated array of ASCII characters, i.e. a C-string. This value is

normally on the form ”SPD-09999”.

product_name[32] (char)

The product name as a zero-terminated array of ASCII characters, i.e. a C-string. For example,

”ADQ32”.

product_options[32] (char)

The product options as a zero-terminated array of ASCII characters, i.e. a C-string. For ex-

ample, ”-DC-S2G5-BW1G0-R0V5-PCIe”. The meaning of each option is described in the product

datasheet. [2] [3] [4]

ADQ3 Series Digitizers — User Guide spdevices.com Page 205 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

firmware (struct ADQConstantParametersFirmware)

This struct is a member of ADQConstantParameters and defines constant parameters for the

firmware currently running on the digitizer.

clock_system (struct ADQClockSystemParameters)

The parameter set of the currently active clock system configuration.

� Important

The clock system configuration cannot bemodified through these parameters. See Section 15.4

for more information.

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQConstantParametersChannel)

An array of ADQConstantParametersChannel structs where each element represents the constant
parameters for a channel. The struct at index 0 targets the first channel.

port[ADQ_MAX_NOF_PORTS] (struct ADQConstantParametersPort)

An array of ADQConstantParametersPort structs where each element represents the constant

parameters for a port. The array is intended to be indexed by using the enumeration ADQPort.

communication_interface (struct ADQConstantParametersCommunicationInterface)

This struct is a member of ADQConstantParameters and defines constant parameters for the com-
munication interface between the host system and the digitizer.

eeprom_user_area_size (uint64_t)

The size (in bytes) of the area in the digitizer’s nonvolatile memory that is dedicated to user data.

Refer to Section 14 for details.

dram_size (uint64_t)

The total size, i.e. capacity, of the digitizer’s on-board DRAM in bytes.

record_buffer_size_step (int32_t)

The required granularity of the record_buffer_size when the digitizer is configured

• for records with infinite length,

• for records with dynamic length (Section 9.1); or

• to continue on overflow (Section 10.6.3).

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 206 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQConstantParametersChannel {
double input_range[ADQ_MAX_NOF_INPUT_RANGES];
char label[8];
int32_t nof_adc_cores;
int32_t nof_input_ranges;
int32_t has_variable_dc_offset;
int32_t has_variable_input_range;
int64_t code_normalization;
int64_t nof_bytes_per_sample;
struct ADQConstantParametersFirFilter fir_filter;
struct ADQConstantParametersPdrx pdrx;
struct ADQConstantParametersAtd atd;
struct ADQConstantParametersPd pd;

}

Description

This struct is a member of ADQConstantParameters and defines constant parameters for a channel.

Members

input_range[ADQ_MAX_NOF_INPUT_RANGES] (double)

An array of input ranges in millivolt. The number of valid entries is given by the value of nof_
input_ranges.

label[8] (char)
The channel label as a zero-terminated array of ASCII characters, i.e. a C-string. For example,

”A”, ”B”, ”C” etc. This label corresponds to the identifier printed on the digitizer’s front panel.

nof_adc_cores (int32_t)

The number of ADC cores used to create the channel’s data stream. This value is greater than

one when several ADC cores are interleaved to achieve a higher effective sampling rate while

running each core at a lower sampling rate.

nof_input_ranges (int32_t)

The number of valid input range entries in the array input_range.

has_variable_dc_offset (int32_t)

A boolean value where a nonzero value indicates that the channel supports a variable DC offset

via the analog front-end parameter dc_offset.

has_variable_input_range (int32_t)

Aboolean value where a nonzero value indicates that the channel supports a variable input range

via the analog front-end parameter input_range.

code_normalization (int64_t)

A normalization factor that is used together with input_range to convert ADC codes to an input

ADQ3 Series Digitizers — User Guide spdevices.com Page 207 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

voltage.

nof_bytes_per_sample (int64_t)

The nominal number of bytes per sample for the current firmware.

fir_filter (struct ADQConstantParametersFirFilter)

This struct defines the constant parameters for the FIR filter of the channel.

pdrx (struct ADQConstantParametersPdrx)

This struct defines the constant parameters for the channel’s PDRX module.

atd (struct ADQConstantParametersAtd)

This struct defines the constant parameters for the channel’s ATD module.

pd (struct ADQConstantParametersPd)

This struct defines the constant parameters for the channel’s PD module.

struct ADQConstantParametersPort {
int32_t nof_pins;
int32_t is_present;
char label[16];
struct ADQConstantParametersPin pin[ADQ_MAX_NOF_PINS];

}

Description

This struct is a member of ADQConstantParameters and defines constant parameters for a port (Sec-

tion 8).

Members

nof_pins (int32_t)

The number of pins in the port. This value specifies the number of valid entries in the array pin.

is_present (int32_t)

A boolean value where a nonzero value indicates that the port is present. This is the same as

testing if nof_pins is greater than zero.

label[16] (char)
The port label as a zero-terminated array of ASCII characters, i.e. a C-string. For example,

”TRIG”, ”SYNC”, ”CLK”. This label corresponds to the identifier printed on the digitizer’s front

panel.

pin[ADQ_MAX_NOF_PINS] (struct ADQConstantParametersPin)

An array of ADQConstantParametersPin structs where each entry represents the constant param-
eters for a pin in the port.

ADQ3 Series Digitizers — User Guide spdevices.com Page 208 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQConstantParametersPin {
enum ADQEventSource event_source;
enum ADQDirection direction;
int32_t has_configurable_threshold;
int32_t reserved;

}

Description

This struct is a member of ADQConstantParametersPort and defines constant parameters for a pin in a
port (Section 8).

Members

event_source (enum ADQEventSource)

The event source (Section 6) associated with the pin. The value is set to ADQ_EVENT_SOURCE_
INVALID if events cannot be generated by the pin.

direction (enum ADQDirection)

The directionality of the pin. A pin with both input and output capabilities is reported with the value

ADQ_DIRECTION_INOUT.

has_configurable_threshold (int32_t)

Pins with an associated event source (event_source != ADQ_EVENT_SOURCE_INVALID) may sup-
port a configurable threshold via the port event source parameter threshold. If this is supported
by the pin, this value is nonzero.

reserved (int32_t)

Reserved

struct ADQConstantParametersFirmware {
enum ADQFirmwareType type;
int32_t reserved;
char name[32];
char revision[32];
char customization[16];
char part_number[16];

}

Description

This struct is a member of ADQConstantParameters and defines constant parameters for the firmware

currently running on the digitizer.

Members

type (enum ADQFirmwareType)

The current firmware type expressed as a value from the enumeration ADQFirmwareType.

ADQ3 Series Digitizers — User Guide spdevices.com Page 209 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

reserved (int32_t)

Reserved

name[32] (char)
The firmware name as a zero-terminated array of ASCII characters, i.e. a C-string. For example,

”1CH-FWDAQ-PCIE”.

revision[32] (char)
The firmware revision as a zero-terminated array ofASCII characters, i.e. a C-string. For example,

”59000”.

customization[16] (char)
The firmware customization as a zero-terminated array of ASCII characters, i.e. a C-string. This

string designates whether the firmware is a standard firmware (”STANDARD”) or built from a devel-

opment kit (”DEVKIT”).

part_number[16] (char)

The firmware part number as a zero-teminated array of ASCII characters, i.e. a C-string. This

string is an identifier used by TSPD and is of limited use to the user.

struct ADQConstantParametersCommunicationInterface {
enum ADQCommunicationInterface type;
int32_t link_width;
int32_t link_generation;
int32_t reserved;

}

Description

This struct is a member of ADQConstantParameters and defines constant parameters for the communi-
cation interface between the host system and the digitizer.

Members

type (enum ADQCommunicationInterface)

The type of communication interface between the host system and the digitizer.

link_width (int32_t)

For PCI-express, this value corresponds to the PCI-express link width, or number of active lanes.

For non-PCIe communication interfaces, it is undefined.

link_generation (int32_t)

For PCI-express, this value corresponds to the PCI-express generation. For non-PCIe communi-

cation interfaces, it is undefined.

reserved (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 210 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQConstantParametersFirFilter {
int32_t is_present;
int32_t order;
int32_t nof_coefficients;
int32_t coefficient_bits;
int32_t coefficient_fractional_bits;
int32_t reserved;

}

Description

This struct is a member of ADQConstantParametersChannel and defines constant parameters for the

FIR filter (Section 5.4).

Members

is_present (int32_t)

A boolean value where a nonzero value indicates that the FIR filter is present in firmware.

order (int32_t)

The FIR filter order.

nof_coefficients (int32_t)

The number of programmable filter coefficients.

coefficient_bits (int32_t)

The total number of bits in the fixed point representation of each coefficient.

coefficient_fractional_bits (int32_t)

The number of fractional bits in the fixed point representation of each coefficient.

reserved (int32_t)

Reserved

struct ADQConstantParametersPdrx {
int32_t is_present;
int32_t high_gain_channel;
int32_t equalizer_order;
int32_t nof_equalizer_coefficients;
int32_t reflection_filter_order;
int32_t nof_reflection_filter_coefficients;

}

Description

This struct is a member of ADQConstantParametersChannel and defines constant parameters for the

channel’s pulse detection range extension (PDRX) module (Section 5.5).

ADQ3 Series Digitizers — User Guide spdevices.com Page 211 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

is_present (int32_t)

A boolean value where a nonzero value indicates that the channel supports PDRX.

high_gain_channel (int32_t)

For channels supporting PDRX (is_present is nonzero), this value holds the index of the corre-
sponding high-gain channel.

equalizer_order (int32_t)

Reserved

nof_equalizer_coefficients (int32_t)

Reserved

reflection_filter_order (int32_t)

Reserved

nof_reflection_filter_coefficients (int32_t)

Reserved

struct ADQConstantParametersAtd {
struct ADQConstantParametersAtdThresholdFilter threshold_filter;

}

Description

This struct is a member of ADQConstantParametersChannel and defines constant parameters for the

channel’s ATD signal processing module (Section 5.6).

Members

threshold_filter (struct ADQConstantParametersAtdThresholdFilter)

This struct contains parameters for the ATD signal processing module threshold filter.

struct ADQConstantParametersAtdThresholdFilter {
int64_t nof_coefficients;
int64_t coefficient_bits;
int64_t coefficient_fractional_bits;

}

Description

This struct is amember of ADQConstantParametersAtd and defines constant parameters for the threshold
filter of the channel’s ATD signal processing module (Section 5.6).

ADQ3 Series Digitizers — User Guide spdevices.com Page 212 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

nof_coefficients (int64_t)

The number of coefficients for the threshold filter of the ATD signal processing module.

coefficient_bits (int64_t)

The number of bits used in the coefficient format for the threshold filter of theATD signal processing

module.

coefficient_fractional_bits (int64_t)

The number of fractional bits used in the coefficient format for the threshold filter of the ATD signal

processing module.

struct ADQConstantParametersPd {
int32_t source_channel;

}

Description

This struct is a member of ADQConstantParametersChannel and defines constant parameters for the

channel’s PD signal processing module (Section 5.7).

Members

source_channel (int32_t)

For pulse attribute channels this value holds the index of the corresponding source channel. The

value is only valid for FWPD.

struct ADQDaisyChainParameters {
enum ADQParameterId id;
enum ADQEventSource source;
enum ADQEdge edge;
enum ADQArm arm;
int32_t resynchronization_enabled;
int32_t position;
uint64_t magic;

}

Description

This struct defines the parameters for the daisy chain function. See Section 7.4 for a high-level descrip-

tion.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_DAISY_

ADQ3 Series Digitizers — User Guide spdevices.com Page 213 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

CHAIN. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

source (enum ADQEventSource)

The event source used for the daisy chain. Valid values are:

• ADQ_EVENT_SOURCE_SOFTWARE
• ADQ_EVENT_SOURCE_TRIG
• ADQ_EVENT_SOURCE_SYNC
• ADQ_EVENT_SOURCE_GPIOA0
• ADQ_EVENT_SOURCE_GPIOB0
• ADQ_EVENT_SOURCE_PXIE_STARB
• ADQ_EVENT_SOURCE_PXIE_TRIG0
• ADQ_EVENT_SOURCE_PXIE_TRIG1
• ADQ_EVENT_SOURCE_LEVEL_MATRIX

The default value is ADQ_EVENT_SOURCE_INVALID.

edge (enum ADQEdge)

An ADQEdge which specifies the edge sensitivity of the source. The default value is ADQ_EDGE_
RISING.

arm (enum ADQArm)

Specifies when the daisy chain function should be armed and ready to react to events from the

selected event source. Valid values are:

• ADQ_ARM_IMMEDIATELY
• ADQ_ARM_AT_ACQUISITION_START

The default value is ADQ_ARM_IMMEDIATELY.

resynchronization_enabled (int32_t)

If set to 1, the daisy chain input signal propagates to the output on the next edge of the reference

clock. If set to 0, the input signal is propagated as soon as possible. In practice, there will be a

nonzero propagation delay since the signal still passes through analog buffers and decision logic

on its way to the output. The default value is 1.

position (int32_t)

Specifies the position of the digitizer in the daisy chain. The position starts at 0.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 214 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQDataAcquisitionParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQDataAcquisitionParametersCommon common;
struct ADQDataAcquisitionParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters for the data acquisition process. See Section 9 for a high-level de-

scription.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_DATA_
ACQUISITION. This is guaranteed if InitializeParameters() is called to initialize the parameter
set.

reserved (int32_t)

Reserved

common (struct ADQDataAcquisitionParametersCommon)

A ADQDataAcquisitionParametersCommon struct holding parameters that apply to all channels.

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQDataAcquisitionParametersChannel)

An array of ADQDataAcquisitionParametersChannel structs where each element represents the
parameters for a channel. The struct at index zero targets the first channel. The constant param-

eter nof_acquisition_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQDataAcquisitionParametersCommon {
int64_t reserved;

}

Description

This struct is a member of ADQDataAcquisitionParameters and defines data acquisition parameters

that apply to all channels.

ADQ3 Series Digitizers — User Guide spdevices.com Page 215 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

reserved (int64_t)

Reserved

struct ADQDataAcquisitionParametersChannel {
int64_t horizontal_offset;
int64_t record_length;
int64_t nof_records;
int64_t nof_bits_per_sample;
double compression_gain;
int64_t dsu_forced_metadata_interval;
int64_t rearm_length;
int64_t dynamic_record_length_max;
int64_t dynamic_leading_edge_window_length;
int64_t dynamic_trailing_edge_window_length;
enum ADQEventSource trigger_source;
enum ADQEdge trigger_edge;
enum ADQFunction trigger_blocking_source;
int32_t zero_length_records_enabled;
int32_t dynamic_record_length_enabled;
int32_t reserved;

}

Description

This struct is a member of ADQDataAcquisitionParameters and defines data acquisition parameters for
a channel.

Members

horizontal_offset (int64_t)

The horizontal offset for a record in samples, i.e. the offset between the trigger event and the first

sample in the acquired record. A negative value captures data before the trigger event (pretrigger)

and a strictly positive value delays the capture. The default value is 0. The valid range and step

size depends on the digitizer model and its current firmware:

• ADQ30

– 1CH: valid range of [−16360,235 − 8], step size of 8

• ADQ32, ADQ33

– 2CH: valid range of [−16360,235 − 8], step size of 8

– 1CH: valid range of [−16336,236 − 16], step size of 16

• ADQ35

– 2CH: valid range of [−16336,236 − 16], step size of 16

– 1CH: valid range of [−16288,237 − 32], step size of 32

ADQ3 Series Digitizers — User Guide spdevices.com Page 216 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• ADQ36

– 4CH: valid range of [−16360,235 − 8], step size of 8

– 2CH: valid range of [−16336,236 − 16], step size of 16

� Note

If dynamic_record_length_enabled is set to 1, the lower bound for the horizontal_offsetwill
depend on the value of dynamic_leading_edge_window_length. Refer to the documentation
for that parameter for more information.

record_length (int64_t)

The record length in samples. The value ADQ_INFINITE_RECORD_LENGTH may be used to indicate
a record with infinite length, i.e. a record that never ends. This configuration has to be matched

by a similar configuration of the data transfer and data readout processes. Refer to Section 10.5.7

for more details. The default value is 0, and the valid range is [2,232 − 1]. The FWATD firmware
puts additional limitations on the record length, which are described in Section 5.6.4. Validation

is only performed for active channels, see nof_records.

nof_records (int64_t)

The number of records to acquire. The value ADQ_INFINITE_NOF_RECORDSmay be used to indicate
an unbounded acquisition. A channel is disabled by setting this parameter to zero (the default

value). The valid range is [0,232 − 1].

nof_bits_per_sample (int64_t)

The number of bits required to store a single sample. When set to a lower value than its default

value, the data compression mechanism is activated (Section 10.8). The valid values depend on

the current firmware:

• FWDAQ: 8,10,12,16

• FWPD: 8,10,12,16

• FWATD: 8,10,12,16,32

The default value is the upper bound in the ranges listed above. This is the natural (uncompressed)

size of a sample for the current firmware. This natural size in bytes is also given by the constant

parameter nof_bytes_per_sample.

compression_gain (double)

The gain factor used to scale a sample before compressing it to the size set by nof_bits_per_
sample. The value is converted to a fixed point fractional number. Refer to Section 10.8 for

additional details. The default value is 1.0 (no scaling).

dsu_forced_metadata_interval (int64_t)

Reserved

rearm_length (int64_t)

The rearm time in samples, i.e. the interval following the end of a record during which any trigger

ADQ3 Series Digitizers — User Guide spdevices.com Page 217 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

event is ignored. Refer to Section 9.2 for additional information.

• ADQ30

– 1CH: valid range of [8,232 − 8] in steps of 8 samples.

• ADQ32, ADQ33

– 2CH: valid range of [8,232 − 8] in steps of 8 samples.

– 1CH: valid range of [16,232 − 16] in steps of 16 samples.

• ADQ35

– 2CH: valid range of [16,232 − 16] in steps of 16 samples.

– 1CH: valid range of [32,232 − 32] in steps of 32 samples.

• ADQ36

– 4CH: valid range of [8,232 − 8] in steps of 8 samples.

– 2CH: valid range of [16,232 − 16] in steps of 16 samples.

� Important

The minimum value can change if the digitizer firmware is updated. However, the minimum

value will at most correspond to the rearm time specified in the digitizer’s datasheet. [1] [2] [3] [4]

dynamic_record_length_max (int64_t)

The maximum record length (in samples) for a record with dynamic length. The value ADQ_
INFINITE_RECORD_LENGTH may be used to allow a record with infinite length, i.e. a record that

never ends. The default value is ADQ_INFINITE_RECORD_LENGTH. In addition to this value, the

valid range is [2,232 − 1].

� Important

This parameter is only used when dynamic_record_length_enabled is set to 1, and is ignore
otherwise.

dynamic_leading_edge_window_length (int64_t)

The leading edge window length (in samples) for a record with dynamic length. The maximum

length depends on the horizontal_offset, and must fulfill

dynamic_leading_edge_window_length ≤ {16360,16336} − |min(horizontal_offset,0)|

where the constant {16360,16336} is the absolute value of the lower bound of the horizontal_
offset, and depends on the digitizer model and its current firmware. The default value is 0.

ADQ3 Series Digitizers — User Guide spdevices.com Page 218 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

� Example

Let the horizontal_offset be −7880 for an ADQ32-1CH digitizer running FWDAQ. The maximum
leading edge window length is calculated as

16336− | − 7880| = 8456.

� Important

This parameter is only used when dynamic_record_length_enabled is set to 1, and must be
set to 0 otherwise.

dynamic_trailing_edge_window_length (int64_t)

The trailing edge window length (in samples) for a record with dynamic length. The default value

is 0. The valid range is [2,232 − 1] when dynamic record length is enabled, and must be set to 0

otherwise.

trigger_source (enum ADQEventSource)

An ADQEventSource whose events are used to trigger a record. The default value is ADQ_EVENT_
SOURCE_SOFTWARE. Not every event source can be used as a trigger source. Valid values are:

• ADQ_EVENT_SOURCE_SOFTWARE
• ADQ_EVENT_SOURCE_TRIG
• ADQ_EVENT_SOURCE_LEVEL
• ADQ_EVENT_SOURCE_PERIODIC
• ADQ_EVENT_SOURCE_PXIE_STARB (only ADQ36-PXIe)
• ADQ_EVENT_SOURCE_SYNC
• ADQ_EVENT_SOURCE_GPIOA0
• ADQ_EVENT_SOURCE_GPIOB0 (only ADQ36-PXIe)
• ADQ_EVENT_SOURCE_PXIE_TRIG0 (only ADQ36-PXIe)
• ADQ_EVENT_SOURCE_PXIE_TRIG1 (only ADQ36-PXIe)
• ADQ_EVENT_SOURCE_REFERENCE_CLOCK
• ADQ_EVENT_SOURCE_MATRIX
• ADQ_EVENT_SOURCE_LEVEL_MATRIX
• ADQ_EVENT_SOURCE_LEVEL_CHANNEL0, ADQ_EVENT_SOURCE_LEVEL_CHANNEL1, etc. up to the
index of the last channel of the digitizer.

• ADQ_EVENT_SOURCE_PATTERN_GENERATOR0
• ADQ_EVENT_SOURCE_PATTERN_GENERATOR1

Refer to the documentation for the respective enumeration value to understand the event source

details.

trigger_edge (enum ADQEdge)

An ADQEdge which specifies the edge selection of the trigger_source. The default value is ADQ_
EDGE_RISING.

ADQ3 Series Digitizers — User Guide spdevices.com Page 219 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

trigger_blocking_source (enum ADQFunction)

An ADQFunction which specifies the trigger blocking source. See Section 9.5 for a high-level

description. Valid values are:

• ADQ_FUNCTION_INVALID
• ADQ_FUNCTION_PATTERN_GENERATOR0
• ADQ_FUNCTION_PATTERN_GENERATOR1

The default value is ADQ_FUNCTION_INVALID which implies that the blocking mechanism is not

active.

zero_length_records_enabled (int32_t)

Set to a nonzero value to enable the generation of a zero length record each time the trigger

blocking mechanism transitions from the accept state to the block state without having observed

any trigger events. Refer to Section 9.5.1 for additional information. The default value is zero

(disabled).

� Note

A zero length record only consists of a header so the data transfer process must enable prop-

agation of metadata for a zero length record to propagate.

dynamic_record_length_enabled (int32_t)

Set to a nonzero value to enable the acquisition of records with dynamic length. The default value

is zero (disabled). When enabled, the data transfer parameter dynamic_record_length_enabled
must be set to 1.

� Important

Dynamic record length is not supported by FWATD.

reserved (int32_t)

Reserved

struct ADQDataTransferParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQDataTransferParametersCommon common;
struct ADQDataTransferParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters for the data transfer process (Section 10).

ADQ3 Series Digitizers — User Guide spdevices.com Page 220 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_DATA_
TRANSFER. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

common (struct ADQDataTransferParametersCommon)

A ADQDataTransferParametersCommon struct holding data transfer parameters that apply to all

channels.

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQDataTransferParametersChannel)

An array of ADQDataTransferParametersChannel structs where each element represents the pa-
rameters for a channel. The struct at index zero targets the first channel. The constant parameter

nof_transfer_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQDataTransferParametersCommon {
int64_t record_buffer_packed_size;
int64_t metadata_buffer_packed_size;
double overflow_hysteresis;
enum ADQMarkerMode marker_mode;
enum ADQMemoryOwner record_buffer_memory_owner;
enum ADQMemoryOwner metadata_buffer_memory_owner;
int32_t write_lock_enabled;
int32_t packed_buffers_enabled;
uint32_t dsu_doorbell_value_mask;
int32_t dsu_operation_size;
int32_t reserved;

}

Description

This struct is a member of ADQDataTransferParameters and defines data transfer parameters that apply
to all channels.

Members

record_buffer_packed_size (int64_t)

The effective size of a packed record transfer buffer. The packed buffer contains the record trans-

ADQ3 Series Digitizers — User Guide spdevices.com Page 221 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

fer buffers for all active channels back-to-back. Each record transfer buffer has size record_
buffer_size. The packed size is calculated by API. Since the buffer allocation always is page

aligned, the allocated buffer size may be larger than the effective size. This parameter is only

used when packed_buffers_enabled is set to 1.

metadata_buffer_packed_size (int64_t)

Like record_buffer_packed_size but for the metadata transfer buffers.

overflow_hysteresis (double)

The overflow hysteresis as a percentage of the total dram_size. This value only affects the data
transfer process when continue_on_overflow_enabled is set to 1. The default value is 3% and

signifies that following an overflow (Section 10.6.1) no new data is written until 3% of the capacity

has been made available, i.e. the fill level has been reduced to 97%.

The value is subjected to rounding and is not intended to be controlled with high precision.

The value read in a call to GetParameters() may be different from the requested hysteresis but

reflects the one used by the digitizer. The valid range is [0, 100]. Refer to Section 10.6.3 for

information.

marker_mode (enum ADQMarkerMode)

An ADQMarkerMode that specifies the way filled transfer buffers are detected. In most use cases
the markers are handled by the API and no direct user interaction with markers is needed. For a

high-level description see Section 10.2. There are three marker modes:

ADQ_MARKER_MODE_HOST_AUTO

The default value ADQ_MARKER_MODE_HOST_AUTO is used together with the data readout

interface (Section 10.5). In this case, markers are handled by the API, out of sight from the

user. Records are received by the user application by calling WaitForRecordBuffer().

ADQ_MARKER_MODE_HOST_MANUAL

The value ADQ_MARKER_MODE_HOST_MANUAL is used together with the data transfer interface
(Section 10.4). The markers will be transferred to memory owned by the API in the host

computer’s RAM and the user application will use WaitForP2pBuffers() to detect filled

transfer buffers.

ADQ_MARKER_MODE_USER_ADDR

The value ADQ_MARKER_MODE_USER_ADDR is used together with the data transfer interface

(Section 10.4) and implies that markers are transferred to the (user owned) memory at

marker_buffer_bus_address.
Detecting filled transfer buffers is either done by the user application or via a third-

party library by monitoring the marker value for each buffer. Each marker consists of a

32-bit value starting at zero. The first time a buffer is available the value 1 is written to the

corresponding marker buffer. Each time new data is available in the buffer the marker value

will increase by 1. This marker format is compatible with clEnqueueWaitSignalAMD().

ADQ3 Series Digitizers — User Guide spdevices.com Page 222 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

record_buffer_memory_owner (enum ADQMemoryOwner)

When this parameter is set to ADQ_MEMORY_OWNER_API (default), record data transfer buffers will

be allocated in the host computer’s RAM by the API. The parameter must be set to ADQ_MEMORY_
OWNER_API when the data readout interface (Section 10.5) is used.

If the parameter is set to ADQ_MEMORY_OWNER_USER, the user is responsible for allocating record
data transfer buffers. The bus address of each allocated transfer buffer must be passed to the

API by assigning the corresponding entries in the record_buffer_bus_address array.
Each transfer buffer must be contiguous and available for direct memory access (DMA). User

supplied transfer buffers can reside in any endpoint, including the host computer’s RAM. This

allocation method can only be used with the data transfer interface (Section 10.4). Refer to Sec-

tion 10.1 for more information.

� Note

This parameter does not control whether or not metadata transfer buffers are allocated by the

API. That is controlled by the neighboring parameter metadata_buffer_memory_owner.

metadata_buffer_memory_owner (enum ADQMemoryOwner)

When this parameter is set to ADQ_MEMORY_OWNER_API (default), metadata transfer buffers will be

allocated in the host computer’s RAM by the API. This allocation is only done for channels where

metadata_enabled is set to 1.
If this parameter is set to ADQ_MEMORY_OWNER_USER, the bus address of each allocated transfer

buffer must be passed to theAPI by assigning the corresponding entries in the metadata_buffer_
bus_address array. The parameter is otherwise symmetrical to record_buffer_memory_owner in
its behavior and requirements. Refer to Section 10.1 for more information.

� Note

This parameter does not control whether or not record data transfer buffers are allocated by the

API. That is controlled by the neighboring parameter record_buffer_memory_owner.

write_lock_enabled (int32_t)

Activates a feature that prevents record and metadata buffers from being overwritten before they

are returned by user application. Must be set to 1 (default) when the data readout interface (Sec-

tion 10.5) is used.

If the data transfer interface (Section 10.4) is used. The parameter can be set to 0 to remove the

need to call UnlockP2pBuffers(), as described in Section 6. Generally, this is not recommended
unless there are reasons that UnlockP2pBuffers() cannot be used and real time processing of
buffers is guaranteed.

packed_buffers_enabled (int32_t)

This parameter controls the API’s allocation mechanism for transfer buffers residing in the host

computer’s RAM. If this parameter is set to 0 (default), transfer buffers will be allocated as inde-

pendent memory regions for all active channels.

If the parameter is set to 1, theAPI will allocate nof_buffers contiguous memory ranges, each
corresponding to a transfer buffer index. Each contiguous memory range will contain one transfer

ADQ3 Series Digitizers — User Guide spdevices.com Page 223 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

buffer for each active channel, placed back-to-back. If metadata is enabled, metadata buffers will

be allocated in the same manner. This allocation scheme is useful in multichannel applications

with high throughput and small buffer sizes where the received data is copied to another location

like a disk or a GPU. For a given transfer buffer index, data from all active channels can be copied

with a single operation, reducing overhead. The source pointers to the packed buffers are found

in record_buffer and metadata_buffer of the lowest active channel index. The size of the

packed buffers are found in record_buffer_packed_size and metadata_buffer_packed_size.
The position of the record data for each channel within a packed buffer is found in record_buffer_
packed_offset and metadata_buffer_packed_offset.

When using packed buffers, nof_buffersmust be set to the same value for all active channels
and at least one of record_buffer_memory_owner or metadata_buffer_memory_owner must be
set to ADQ_MEMORY_OWNER_API. Additionally, the data acquisition and data transfer must be con-

figured so that the transfer buffers for all active channels are filled at the same rate. This typically

means that all active channels must use the same trigger_source and that the record_buffer_
size must be set to the same multiple of record_size.

dsu_doorbell_value_mask (uint32_t)

Reserved

dsu_operation_size (int32_t)

Reserved

reserved (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 224 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQDataTransferParametersChannel {
uint64_t record_buffer_bus_address[ADQ_MAX_NOF_BUFFERS];
uint64_t metadata_buffer_bus_address[ADQ_MAX_NOF_BUFFERS];
uint64_t marker_buffer_bus_address[ADQ_MAX_NOF_BUFFERS];
int64_t nof_buffers;
int64_t record_size;
int64_t record_buffer_size;
int64_t metadata_buffer_size;
int64_t record_buffer_packed_offset;
int64_t metadata_buffer_packed_offset;
double eject_buffer_timeout;
volatile void * record_buffer[ADQ_MAX_NOF_BUFFERS];
volatile void * metadata_buffer[ADQ_MAX_NOF_BUFFERS];
volatile uint32_t * marker_buffer[ADQ_MAX_NOF_BUFFERS];
int32_t infinite_record_length_enabled;
int32_t dynamic_record_length_enabled;
int32_t continue_on_overflow_enabled;
int32_t record_enabled;
int32_t metadata_enabled;
int32_t dsu_record_enabled;
int32_t dsu_metadata_enabled;
uint32_t dsu_record_enabled_endpoints_mask;
uint32_t dsu_metadata_enabled_endpoints_mask;
enum ADQFunction eject_buffer_source;

}

Description

This struct is a member of ADQDataTransferParameters and defines the data transfer parameters for a
channel.

Members

record_buffer_bus_address[ADQ_MAX_NOF_BUFFERS] (uint64_t)

Bus addresses to the record transfer buffers (see Section 10.1). This array is filled in

• by the API if record_buffer_memory_owner is set to ADQ_MEMORY_OWNER_API; and
• by the user application if record_buffer_memory_owner is set to ADQ_MEMORY_OWNER_USER.
Each transfer buffer must be contiguous and available for direct memory access. User

supplied transfer buffers can reside in any endpoint, including the host computer’s RAM.

metadata_buffer_bus_address[ADQ_MAX_NOF_BUFFERS] (uint64_t)

Bus addresses to the metadata transfer buffers (see Section 10.1). This array is filled in

• by the API if metadata_buffer_memory_owner is set to ADQ_MEMORY_OWNER_API; and
• by the user application if metadata_buffer_memory_owner is set to ADQ_MEMORY_OWNER_
USER. Each transfer buffer must be contiguous and available for direct memory access. User

ADQ3 Series Digitizers — User Guide spdevices.com Page 225 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

supplied transfer buffers can reside in any endpoint, including the host computer’s RAM.

marker_buffer_bus_address[ADQ_MAX_NOF_BUFFERS] (uint64_t)

Bus addresses to marker buffers (see Section 10.2). This array is filled in

• by the API if marker_mode is set to ADQ_MARKER_MODE_HOST_AUTO or ADQ_MARKER_MODE_
HOST_MANUAL; and

• by the user application if marker_mode is set to ADQ_MARKER_MODE_USER_ADDR. Each marker
buffer must be available for direct memory access. User supplied marker buffers can reside

in any endpoint, including the host computer’s RAM.

nof_buffers (int64_t)

The number of transfer buffers pairs to use, see Section 10.1. For an active channel, valid values

are in the range [2, ADQ_MAX_NOF_BUFFERS]. Set the parameter to 0 (default) to disable the channel.

record_size (int64_t)

The record size in bytes. This parameter is used when the digitizer is configured to acquire records

with static length and should be calculated by the user application as⌈
record_length · nof_bits_per_sample

8

⌉
.

However, when the digitizer is configured

• for records with infinite length,

• for records with dynamic length (Section 9.1); or

• to continue on overflow (Section 10.6.3),

the value must be set to 0 (default).

record_buffer_size (int64_t)

The effective record transfer buffer size in bytes. This value must either

1. be a multiple of record_size, if larger than or equal to record_size; or
2. a multiple of record_buffer_size_step if smaller than record_size; or
3. a multiple of record_buffer_size_step if record_size is zero.

Themultiple in case 1must be the same as for metadata_buffer_size. Since the buffer allocation
always is page aligned, the allocated buffer size may be larger than the effective size. The default

value is 0.

metadata_buffer_size (int64_t)

The effective record metadata buffer size in bytes. This value must be a multiple of the size of

an ADQGen4RecordHeader. Additionally, if case 1 for record_buffer_size is selected, the same
multiple must be used when assigning the metadata_buffer_size. Since the buffer allocation

always is page aligned, the allocated buffer size may be larger than the effective size. The default

value is 0.

ADQ3 Series Digitizers — User Guide spdevices.com Page 226 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

record_buffer_packed_offset (int64_t)

The offset of the channel’s record data in a packed buffer. Only used when packed_buffers_
enabled is set to 1. See packed_buffers_enabled for additional details.

metadata_buffer_packed_offset (int64_t)

The offset of the channel’s metadata in a packed buffer. Only used when packed_buffers_
enabled is set to 1. See packed_buffers_enabled for additional details.

eject_buffer_timeout (double)

This parameter specifies a timeout, in seconds, after which any active (partially filled) transfer

buffer is ejected. The timeout is enabled when eject_buffer_timeout is set to a value greater
than zero and disabled by specifying the value zero. The resolution is in the hundreds of mi-

croseconds range for the default sampling rate. Moreover, the resolution and the lower and upper

bounds of the parameter depends on the digitizer model, its channel configuration and its current

sampling_frequency but is generally in the range

[0,65535] · 65536 · {8,16}
sampling_frequency

.

The eject_buffer_source must be set to ADQ_FUNCTION_INVALID when the timeout is enabled.
See Section 10.7 for additional details.

� Note

The timeout mechanism is not intended to provide a high-precision timer. For real-time require-

ments, use one of the pattern generators to define an eject signal. Refer to Section 10.7 for

more information.

record_buffer[ADQ_MAX_NOF_BUFFERS] (volatile void *)

Pointers to the record transfer buffers. Only valid when record_buffer_memory_owner is set to
ADQ_MEMORY_OWNER_API. The default value is NULL.

metadata_buffer[ADQ_MAX_NOF_BUFFERS] (volatile void *)

Pointers to the metadata transfer buffers. Only valid when metadata_buffer_memory_owner is

set to ADQ_MEMORY_OWNER_API. The default value is NULL.

marker_buffer[ADQ_MAX_NOF_BUFFERS] (volatile uint32_t *)

Pointers to the marker buffers. Only valid when marker_mode is set to ADQ_MARKER_MODE_HOST_
AUTO or ADQ_MARKER_MODE_HOST_MANUAL. The default value is NULL.

infinite_record_length_enabled (int32_t)

This parameters specifies whether or not the channel supports the transfer of a record with infinite

length, i.e. where record_length is set to ADQ_INFINITE_RECORD_LENGTH. Refer to Section 10.5.7
for more information on how a record with this property needs to be received by the user applica-

tion.

ADQ3 Series Digitizers — User Guide spdevices.com Page 227 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

dynamic_record_length_enabled (int32_t)

This parameter specifies whether or not the channel supports the transfer of a record with dynamic

length, i.e. when the record length is not known beforehand. See Sections 9.1 and 10 for more

information.

When enabled, the following must be fulfilled:

• metadata must be enabled by setting metadata_enabled to 1,
• the record_buffer_size parameter must be set to a multiple of the record_buffer_size_
step value, and

• the record_size parameter must be set to 0.

continue_on_overflow_enabled (int32_t)

This parameter specifies whether or not the channel should continue the data acquisition when

the on-board memory is full. If disabled (the default value), the data acquisition process will im-

mediately stop once this condition is met. The records already present in the on-board memory

may be transferred to the receiving endpoint, but no new records will be acquired. If continue on

overflow is enabled, new records will be safely discarded until there’s enough space in the on-

board memory to fit a complete record. When continue on overflow is enabled, the data transfer

parameter dynamic_record_length_enabled must be set to 1.
The default value is 0 (disabled). Refer to Section 10.6 for more information on the different

overflow behaviors.

� Important

The parameter continue_on_overflow_enabled is not applicable for FWATD. FWATD will al-

ways safely discard data on overflow, as described in Section 5.6.6.

record_enabled (int32_t)

Reserved

metadata_enabled (int32_t)

This parameter specifies whether or not record metadata is transferred to the target endpoint. The

metadata constitutes the basis for the record header ADQGen4RecordHeader. Set the parameter
to 1 (default) to enable and 0 to disable.

� Important

If disabled, the header member in a record received from WaitForRecordBuffer() will be set
to NULL. Make sure to not access this member if metadata is disabled.

dsu_record_enabled (int32_t)

Reserved

dsu_metadata_enabled (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 228 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

dsu_record_enabled_endpoints_mask (uint32_t)

Reserved

dsu_metadata_enabled_endpoints_mask (uint32_t)

Reserved

eject_buffer_source (enum ADQFunction)

This parameter specifies the source that will be used to eject a partially filled transfer buffer, see

Section 10.7. Valid sources are:

• ADQ_FUNCTION_INVALID (default)
• ADQ_FUNCTION_PATTERN_GENERATOR0
• ADQ_FUNCTION_PATTERN_GENERATOR1
• ADQ_FUNCTION_RECORD_STOP

The eject_buffer_timeout must be set to zero when an eject buffer source is specified.

struct ADQDataReadoutParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQDataReadoutParametersCommon common;
struct ADQDataReadoutParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters for the data readout process.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_DATA_
READOUT. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

common (struct ADQDataReadoutParametersCommon)

A ADQDataReadoutParametersCommon struct holding data transfer parameters that apply to all

channels.

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQDataReadoutParametersChannel)

An array of ADQDataReadoutParametersChannel structs where each element represents the pa-
rameters for a channel. The struct at index zero targets the first channel. The constant parameter

nof_transfer_channels holds the number of valid entries.

ADQ3 Series Digitizers — User Guide spdevices.com Page 229 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQDataReadoutParametersCommon {
enum ADQMemoryOwner memory_owner;
int32_t thread_sleep_duration;

}

Description

This struct is a member of ADQDataReadoutParameters and defines data transfer parameters that apply
to all channels. Currently, no ADQ3 series digitizer uses any of the member parameters.

Members

memory_owner (enum ADQMemoryOwner)

This parameter specifies who is responsible for memory management: the API or the user. Cur-

rently, the only supported value is ADQ_MEMORY_OWNER_API (default).

thread_sleep_duration (int32_t)

This parameter specifies the sleep duration, in microseconds, for the internal data readout thread.

The thread will sleep this amount between each iteration. The value can be used to limit the CPU

load, at the cost of reduced throughput. The default value is 0.

� Important

Setting the thread_sleep_duration to a positive value will limit the maximum throughput.

struct ADQDataReadoutParametersChannel {
int64_t nof_record_buffers_max;
int64_t nof_record_buffers_in_array;
int64_t record_buffer_size_max;
int64_t record_buffer_size_increment;
int32_t incomplete_records_enabled;
int32_t reserved;

}

Description

This struct is a member of ADQDataReadoutParameters and defines the data readout parameters for a
channel.

ADQ3 Series Digitizers — User Guide spdevices.com Page 230 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

nof_record_buffers_max (int64_t)

This parameter specifies an upper limit for the number of record buffers that are dynamically

allocated for the channel. Any positive number ≥ 0 is allowed, along with the special value ADQ_
INFINITE_NOF_RECORDS which indicates that there is no upper limit. If set to zero, the dynamic

allocation mechanism is disabled. The default value is ADQ_INFINITE_NOF_RECORDS. See Sec-

tion 10.5.2 for more information.

nof_record_buffers_in_array (int64_t)

When this parameter is set to a positive integer, the function WaitForRecordBuffer() will emit

objects of the type ADQGen4RecordArray, grouping together consecutive record buffers and pre-
senting them as a single unit.

When this parameter is set to zero (the default value), WaitForRecordBuffer() will instead

emit single ADQGen4Record objects, i.e. one record buffer per call.

Negative values are not allowed, except for the value ADQ_FOLLOW_RECORD_TRANSFER_BUFFER
(-1) which indicates that the number of array elements should follow the properties of a record

transfer buffer.

� Important

Changing this parameter from its default value is only required if the data readout interface starts

to limit the data thoughput to the user application. See Section 10.5.8 for more information on

when this may be required.

record_buffer_size_max (int64_t)

This parameter specifies an upper limit for how large a dynamically allocated record buffer is

allowed to grow (in bytes). Any positive number > 0 is allowed, along with the special number

ADQ_INFINITE_RECORD_LENGTH which indicates that there is no upper limit. The default value is

ADQ_INFINITE_RECORD_LENGTH. See Section 10.5.2 for more information.

record_buffer_size_increment (int64_t)

This parameter specifies the minimum amount (in bytes) by which a record buffer grows when

reallocation is required. If allowed by record_buffer_size_max, the reallocation will first attempt
to grow the buffer by as much as needed, but always at least by the size indicated by record_
buffer_size_increment. Additionally, the value of this parameter specifies the initial size of a

record buffer. The default value is 128 kiB. See Section 10.5.2 for more information.

incomplete_records_enabled (int32_t)

As described in Section 10.5.7, this parameters determines whether or not incomplete records

are allowed to propagate to the user via WaitForRecordBuffer(). The default value is 0.

reserved (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 231 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQDbsParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQDbsParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the digital baseline stabilization module for all channels of the

digitizer. See Section 5.3 for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_DBS. This
is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQDbsParametersChannel)

An array of ADQDbsParametersChannel structs where each element represents the parameters

for a channel. The struct at index zero targets the first channel. The constant parameter nof_
channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 232 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQDbsParametersChannel {
int32_t enabled;
int32_t reset;
int32_t level;
int32_t lower_saturation_threshold;
int32_t upper_saturation_threshold;
int32_t lower_saturation_value;
int32_t upper_saturation_value;
int32_t ignore_overrange_samples;
int32_t ignore_saturated_samples;
int32_t ignore_region_leading_edge_window;
int32_t ignore_region_trailing_edge_window;
int32_t tracking_update_period;
double tracking_update_weight;
enum ADQFunction tracking_control_source;
int32_t reserved;

}

Description

This struct is a member of ADQDbsParameters and defines digital baseline stabilization parameters for a
channel.

Members

enabled (int32_t)

Set to a nonzero value to enable. The default value is 0 (disabled).

reset (int32_t)

Set to a nonzero value to reset the current state of the DBS module. Issuing a reset is recom-

mended when configuring DBS with new settings, but it can be left at 0 when performing contin-

uous adjustments to e.g. the upper_saturation_threshold or lower_saturation_threshold.
This is a write-only parameter and will always read as 0.

level (int32_t)

The target DC level in ADC codes.

lower_saturation_threshold (int32_t)

The number of codes below the level the signal is allowed to reach before the DBS tracking

algorithm will consider it saturated. The saturation does not affect the actual sample data after it

has passed through DBS. The value is given as a negative number. This parameter will default

to the minimum representable sample value, which effectively disables saturation.

upper_saturation_threshold (int32_t)

The number of codes above the level the signal is allowed to reach before the DBS tracking

algorithm will consider it saturated. The saturation does not affect the actual sample data after it

ADQ3 Series Digitizers — User Guide spdevices.com Page 233 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

has passed through DBS. The value is given as a positive number. This parameter will default to

the maximum representable sample value, which effectively disables saturation.

lower_saturation_value (int32_t)

The value which the DBS tracking algorithm will saturate to while the signal is below the lower_
saturation_threshold. The value is given relative to the level, and setting it to 0 will result in
the tracking being unaffected by the saturated data. Recommended to leave at default value.

upper_saturation_value (int32_t)

The value which the DBS tracking algorithm will saturate to while the signal is above the upper_
saturation_threshold. The value is given relative to the level, and setting it to 0 will result in
the tracking being unaffected by the saturated data. Recommended to leave at default value.

ignore_overrange_samples (int32_t)

If set to a nonzero value, all samples that (prior to DBS) are tagged as overrange due to clipping in

the analog frontend or other signal processing modules will be ignored by the tracking algorithm.

ignore_saturated_samples (int32_t)

If set to a nonzero value, all samples that extend past the upper_saturation_threshold or

lower_saturation_threshold will be ignored by the tracking algorithm.

ignore_region_leading_edge_window (int32_t)

The length of the leading edge window during which samples are ignored by the DBS track-

ing, before the samples that caused the condition (via ignore_overrange_samples or ignore_
saturated_samples). Given as a number of samples.

• ADQ30

– 1CH: valid range of [0,112] in steps of 8 samples.

• ADQ32, ADQ33

– 2CH: valid range of [0,112] in steps of 8 samples.
– 1CH: valid range of [0,224] in steps of 16 samples.

• ADQ35

– 2CH: valid range of [0,224] in steps of 16 samples.
– 1CH: valid range of [0,448] in steps of 32 samples.

• ADQ36

– 4CH: valid range of [0,112] in steps of 8 samples.
– 2CH: valid range of [0,224] in steps of 16 samples.

ignore_region_trailing_edge_window (int32_t)

The length of the trailing edge window during which samples are ignored by the DBS tracking, after

the samples that caused the condition (via ignore_overrange_samples or ignore_saturated_
samples). Given as a number of samples.

ADQ3 Series Digitizers — User Guide spdevices.com Page 234 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• ADQ30

– 1CH: valid range of [0,262136] in steps of 8 samples.

• ADQ32, ADQ33

– 2CH: valid range of [0,262136] in steps of 8 samples.
– 1CH: valid range of [0,524272] in steps of 16 samples.

• ADQ35

– 2CH: valid range of [0,524272] in steps of 16 samples.
– 1CH: valid range of [0,524272] in steps of 32 samples.

• ADQ36

– 4CH: valid range of [0,262136] in steps of 8 samples.
– 2CH: valid range of [0,524272] in steps of 16 samples.

tracking_update_period (int32_t)

The period with which the DBS tracking state is updated. This also determines the amount of

sample data which is analyzed by the DBS module in order to produce each update. A higher

value corresponds to a slower convergence. Recommended to leave at default value.

• ADQ30

– 1CH: valid range of [256,262136] in steps of 8 samples.

• ADQ32, ADQ33

– 2CH: valid range of [256,262136] in steps of 8 samples.
– 1CH: valid range of [512,524272] in steps of 16 samples.

• ADQ35

– 2CH: valid range of [512,524272] in steps of 16 samples.
– 1CH: valid range of [1024,524272] in steps of 32 samples.

• ADQ36

– 4CH: valid range of [256,262136] in steps of 8 samples.
– 2CH: valid range of [512,524272] in steps of 16 samples.

tracking_update_weight (double)

Determines how much each new tracking update affects the current state of the DBS module. A

value closer to 1.0 means that the tracking state is mostly determined by the latest update which

will result in faster convergence, while a value closer to 0.0means that the state is barely affected

by each new update. Recommended to leave at default value. Valid range of]0.0,1.0[with a

default value of 0.1.

tracking_control_source (enum ADQFunction)

An ADQFunction which specifies the tracking control source. See Section 5.3.2 for a high-level

description. Valid values are:

ADQ3 Series Digitizers — User Guide spdevices.com Page 235 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• ADQ_FUNCTION_INVALID
• ADQ_FUNCTION_PATTERN_GENERATOR0
• ADQ_FUNCTION_PATTERN_GENERATOR1

The default value is ADQ_FUNCTION_INVALID which implies that the tracking control mechanism is

not active.

reserved (int32_t)

Reserved

struct ADQDigitalGainAndOffsetParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQDigitalGainAndOffsetParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the digital gain and offset module for all channels of the digitizer.

See Section 5.1 for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_DIGITAL_
GAINANDOFFSET. This is guaranteed if InitializeParameters() is called to initialize the parameter
set.

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQDigitalGainAndOffsetParametersChannel)

An array of ADQDigitalGainAndOffsetParametersChannel structs where each element repre-

sents the parameters for a channel. The struct at index zero targets the first channel. The constant

parameter nof_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 236 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQDigitalGainAndOffsetParametersChannel {
int64_t gain;
int64_t offset;

}

Description

This struct is a member of ADQDigitalGainAndOffsetParameters and defines digital baseline stabiliza-
tion parameters for a channel.

Members

gain (int64_t)

The channel’s digital gain. The value is normalized to 10 bits, i.e. a value of 1024 corresponds to

unity gain. This number is also defined as ADQ_UNITY_GAIN. The allowed range is [−8192,8192]
and the default value is ADQ_UNITY_GAIN.

offset (int64_t)

The offset value in ADC codes. An offset of 32 codes will increase the value of each sample by

32. The allowed range is [−16384,16384] and the default value is zero.

struct ADQEventSourceParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQEventSourcePeriodicParameters periodic;
struct ADQEventSourceLevelParameters level;
struct ADQEventSourceLevelMatrixParameters level_matrix;
struct ADQEventSourcePortParameters port[ADQ_MAX_NOF_PORTS];
struct ADQEventSourceMatrixParameters matrix;
uint64_t magic;

}

Description

This is a high-level struct collecting the parameters of all the event sources of the digitizer. This means

that each member struct is also an object that may interact with the configuration functions (see Sec-

tion A.4.3). Refer to Section 6 for a high-level description of event sources.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_EVENT_
SOURCE. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 237 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

periodic (struct ADQEventSourcePeriodicParameters)

A ADQEventSourcePeriodicParameters struct holding the parameters of the periodic event

source. See Section 6.3 for a high-level description.

level (struct ADQEventSourceLevelParameters)

A ADQEventSourceLevelParameters struct holding the parameters of the signal level event

sources. See Section 6.4 for a high-level description.

level_matrix (struct ADQEventSourceLevelMatrixParameters)

AADQEventSourceLevelMatrixParameters struct holding the parameters of the signal level event
source matrix. See Section 6.5 for a high-level description.

port[ADQ_MAX_NOF_PORTS] (struct ADQEventSourcePortParameters)

An array of ADQEventSourcePortParameters structs where each element represents the param-
eters for ports with an associated event source. Not all ports have an event source tied to them.

This is indicated by the constant parameter event_source. The array is intended to be indexed
by using the enumeration ADQPort.

matrix (struct ADQEventSourceMatrixParameters)

An ADQEventSourceMatrixParameters struct holding the parameters of the matrix event source.
See Section 6.10 for a high-level description.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQEventSourceLevelParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQEventSourceLevelParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the signal level event sources for all channels of the digitizer. See

Section 6.4 for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_EVENT_
SOURCE_LEVEL. This is guaranteed if InitializeParameters() is called to initialize the parameter
set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 238 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQEventSourceLevelParametersChannel)

An array of ADQEventSourceLevelParametersChannel structs where each element represents

the parameters for a channel. The struct at index zero targets the first channel. The constant

parameter nof_acquisition_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQEventSourceLevelParametersChannel {
int64_t level;
int64_t arm_hysteresis;

}

Description

This struct is a member of ADQEventSourceLevelParameters and defines the signal level event source
parameters for a channel.

Members

level (int64_t)

The signal threshold in ADC codes. The default value is 0.

arm_hysteresis (int64_t)

The arm hysteresis in ADC codes. The default value is 100.

struct ADQEventSourceLevelMatrixParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQEventSourceLevelMatrixParametersChannel channel;
uint64_t magic;

}

Description

This struct is a member of ADQEventSourceLevelParameters and defines the parameters for the signal
level matrix event source.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_EVENT_

ADQ3 Series Digitizers — User Guide spdevices.com Page 239 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

SOURCE_LEVEL_MATRIX. This is guaranteed if InitializeParameters() is called to initialize the

parameter set.

reserved (int32_t)

Reserved

channel (struct ADQEventSourceLevelMatrixParametersChannel)

An array of ADQEventSourceLevelMatrixParametersChannel structs where each element repre-
sents the parameters for a channel. The struct at index zero targets the first channel. The constant

parameter nof_acquisition_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQEventSourceLevelMatrixParametersChannel {
int32_t enabled;
enum ADQEdge edge;

}

Description

This struct is a member of ADQEventSourceLevelMatrixParameters and holds the parameters for the

channel’s signal level event source in the matrix.

Members

enabled (int32_t)

This parameter specifies whether or not to enable the event stream from the target channel in the

matrix. Set to a nonzero value to enable, zero to disable. The default value is 0.

edge (enum ADQEdge)

The edge sensitivity for the target channel event source. Valid values are:

• ADQ_EDGE_RISING
• ADQ_EDGE_FALLING
• ADQ_EDGE_BOTH

When the channel is not enabled the edge sensitivity is ignored. The default value is ADQ_EDGE_
RISING.

ADQ3 Series Digitizers — User Guide spdevices.com Page 240 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQEventSourcePeriodicParameters {
enum ADQParameterId id;
enum ADQEventSource synchronization_source;
enum ADQEdge synchronization_edge;
enum ADQSynchronizationMode synchronization_mode;
enum ADQArm synchronization_arm;
int32_t reserved;
int64_t period;
int64_t high;
int64_t low;
double frequency;
uint64_t magic;

}

Description

This struct defines the parameters of the periodic event source. See Section 6.3 for a high-level de-

scription. The event source offers three different methods of configuring the properties of the underlying

digital periodic signal, specifying either (in order of precedence):

• the logic high and logic low durations,

• the period; or

• the frequency.

The first nonzero value will determine which method is used to specify the properties of the signal.

� Important

Reading the current parameters via GetParameters() will set all the parameters to nonzero values

corresponding to the current configuration. For example, setting the frequency to 1 kHz and reading

back the result will result in high, low and period being set to the values corresponding to a periodic
signal with frequency 1 kHz.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_EVENT_
SOURCE_PERIODIC. This is guaranteed if InitializeParameters() is called to initialize the param-
eter set.

synchronization_source (enum ADQEventSource)

The event source used to synchronize the periodic event source. See Section 6.3.1 for a high-level

description. Valid values are:

• ADQ_EVENT_SOURCE_INVALID (synchronization disabled)
• ADQ_EVENT_SOURCE_SOFTWARE
• ADQ_EVENT_SOURCE_TRIG

ADQ3 Series Digitizers — User Guide spdevices.com Page 241 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• ADQ_EVENT_SOURCE_SYNC
• ADQ_EVENT_SOURCE_GPIOA0
• ADQ_EVENT_SOURCE_GPIOB0
• ADQ_EVENT_SOURCE_PXIE_STARB
• ADQ_EVENT_SOURCE_REFERENCE_CLOCK
• ADQ_EVENT_SOURCE_PXIE_TRIG0
• ADQ_EVENT_SOURCE_PXIE_TRIG1

The default value is ADQ_EVENT_SOURCE_INVALID.

synchronization_edge (enum ADQEdge)

An ADQEdge which specifies the edge sensitivity of the periodic event source’s synchronization

mechanism. The default value is ADQ_EDGE_RISING. Refer to Section 6.3.1 for more information.

synchronization_mode (enum ADQSynchronizationMode)

Selects the periodic event source synchronization mode. Valid values are:

• ADQ_SYNCHRONIZATION_MODE_DISABLE
• ADQ_SYNCHRONIZATION_MODE_FIRST
• ADQ_SYNCHRONIZATION_MODE_ALL

The default value is ADQ_SYNCHRONIZATION_MODE_DISABLE. Section 6.3.1 for more information.

synchronization_arm (enum ADQArm)

Specifies when the periodic event source synchronization should be armed and ready to react.

Valid values are:

• ADQ_ARM_IMMEDIATELY
• ADQ_ARM_AT_ACQUISITION_START

The default value is ADQ_ARM_IMMEDIATELY. Section 6.3.1 for more information.

reserved (int32_t)

Reserved

period (int64_t)

The period of the signal, given as a whole number of sampling periods (measured in the digitizer’s

sampling_frequency). This value takes precedence over frequency but is only used if both high
and low are set to zero. The default value is zero.

high (int64_t)

The duration of the logic high part of the periodic signal, given as a whole number of sampling

periods (measured in the digitizer’s sampling_frequency). This value takes precedence over

both frequency and period. The default value is zero.

low (int64_t)

The duration of the logic low part of the periodic signal, given as a whole number of sampling

periods (measured in the digitizer’s sampling_frequency). This value takes precedence over

both frequency and period. The default value is zero.

ADQ3 Series Digitizers — User Guide spdevices.com Page 242 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

frequency (double)

The frequency of the periodic signal, in Hertz. This value is only used if the other parameters

are set to zero. The precision of the frequency approach depends on the sampling_frequency
of the digitizer. The closest synthesizable frequency will be selected. The resulting frequency is

readable by calling GetParameters(). The default value is 1000.0.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQEventSourceSoftwareParameters {
enum ADQParameterId id;
int32_t reference_clock_synchronization_enabled;
enum ADQEdge reference_clock_synchronization_edge;
int32_t reserved;
uint64_t magic;

}

Description

This struct defines the parameters of the software controlled event source.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_EVENT_
SOURCE_SOFTWARE. This is guaranteed if InitializeParameters() is called to initialize the param-
eter set.

reference_clock_synchronization_enabled (int32_t)

If set to 1 the event source will be synchronized to the reference clock. The default value is 0

(disabled).

reference_clock_synchronization_edge (enum ADQEdge)

The event source edge that should be synchronized. If a single edge is selected the other edge

will be discarded. The default value is ADQ_EDGE_BOTH.

reserved (int32_t)

Reserved

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 243 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQEventSourcePortParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQEventSourcePortParametersPin pin[ADQ_MAX_NOF_PINS];
uint64_t magic;

}

Description

This struct defines the parameters of the event source associated with a port. See Sections 6.6–6.7

for a high-level description. While the parameter definition is shared across all ports, the event sources

associated with them are distinct. A consequence of this is that the struct identifier, id, may have several
valid values, each targeting the event source of a specific port.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to one of the following values:

• ADQ_PARAMETER_ID_EVENT_SOURCE_TRIG
• ADQ_PARAMETER_ID_EVENT_SOURCE_SYNC
• ADQ_PARAMETER_ID_EVENT_SOURCE_GPIOA
• ADQ_PARAMETER_ID_EVENT_SOURCE_GPIOB
• ADQ_PARAMETER_ID_EVENT_SOURCE_PXIE

This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

pin[ADQ_MAX_NOF_PINS] (struct ADQEventSourcePortParametersPin)

An array of ADQEventSourcePortParametersPin structs where each element represents the pa-
rameters of a pin in the port. Some ports only have one pin (index 0) and some ports may have

several. Refer to the constant parameter nof_pins for the corresponding port to programmatically
determine the number of available pins.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 244 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQEventSourcePortParametersPin {
int32_t reference_clock_synchronization_enabled;
double threshold;
enum ADQEdge reference_clock_synchronization_edge;

}

Description

This struct is a member of ADQEventSourcePortParameters and defines the parameters of a pin. See
Sections 6.6–6.7 for a high-level description.

Members

reference_clock_synchronization_enabled (int32_t)

If set to 1 the event source will be synchronized to the reference clock. The default value is 0

(disabled).

threshold (double)
The threshold in Volts. The default value is 0.5 V for ADQ_PARAMETER_ID_EVENT_SOURCE_TRIG and
ADQ_PARAMETER_ID_EVENT_SOURCE_SYNC. For other event sources, this parameter is unused.

reference_clock_synchronization_edge (enum ADQEdge)

The event source edge that should be synchronized. If a single edge is selected the other edge

will be discarded. The default value is ADQ_EDGE_BOTH.

struct ADQEventSourceMatrixParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQEventSourceMatrixParametersInput input[ADQ_MAX_NOF_MATRIX_INPUTS];
uint64_t magic;

}

Description

This struct defines the parameters of the matrix event source. See Section 6.10 for a high-level descrip-

tion.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_EVENT_
SOURCE_MATRIX. This is guaranteed if InitializeParameters() is called to initialize the parameter
set.

reserved (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 245 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

input[ADQ_MAX_NOF_MATRIX_INPUTS] (struct ADQEventSourceMatrixParametersInput)

An array of ADQEventSourceMatrixParametersInput structs where each element defines one

event source and corresponding edges (rising, falling, both) that should be considered by this

source.

If multiple of the configured event sources triggers an event during the same data clock cycle,

the one with lowest index will have priority.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQEventSourceMatrixParametersInput {
enum ADQEventSource source;
enum ADQEdge edge;

}

Description

This struct defines the parameters of each event source connected to the matrix event source and is part

of ADQEventSourceMatrixParameters.

Members

source (enum ADQEventSource)

An event source. Valid options are:

• ADQ_EVENT_SOURCE_TRIG
• ADQ_EVENT_SOURCE_SOFTWARE
• ADQ_EVENT_SOURCE_GPIOA0
• ADQ_EVENT_SOURCE_GPIOB0
• ADQ_EVENT_SOURCE_SYNC
• ADQ_EVENT_SOURCE_PXIE_STARB

The special case ADQ_EVENT_SOURCE_INVALID is also valid and means no source/disabled. The
default value is ADQ_EVENT_SOURCE_INVALID.

edge (enum ADQEdge)

An event edge. Valid options are:

• ADQ_EDGE_RISING
• ADQ_EDGE_FALLING
• ADQ_EDGE_BOTH

The default value is ADQ_EDGE_RISING.

ADQ3 Series Digitizers — User Guide spdevices.com Page 246 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQFirFilterParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQFirFilterParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the FIR filter module for all channels of the digitizer. See Section 5.4

for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_FIR_
FILTER. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQFirFilterParametersChannel)

An array of ADQFirFilterParametersChannel structs where each element represents the param-
eters for a channel. The struct at index zero targets the first channel. The constant parameter

nof_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQFirFilterParametersChannel {
enum ADQRoundingMethod rounding_method;
enum ADQCoefficientFormat format;
double coefficient[ADQ_MAX_NOF_FILTER_COEFFICIENTS];
int32_t coefficient_fixed_point[ADQ_MAX_NOF_FILTER_COEFFICIENTS];

}

Description

This struct is a member of ADQFirFilterParameters and defines the FIR filter parameters for a channel.

Members

rounding_method (enum ADQRoundingMethod) � Write-only

The rounding method that is used to convert the floating point values in the coefficient array to
the fixed point precision of the filter. The default value is ADQ_ROUNDING_METHOD_TIE_AWAY_FROM_
ZERO. This parameter is write-only.

ADQ3 Series Digitizers — User Guide spdevices.com Page 247 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

format (enum ADQCoefficientFormat) � Write-only

The coefficient format to use when setting the filter coefficients. Refer to the enumeration

ADQCoefficientFormat for more information. The default value is ADQ_COEFFICIENT_FORMAT_
DOUBLE. This parameter is write-only.

coefficient[ADQ_MAX_NOF_FILTER_COEFFICIENTS] (double)

The filter coefficients, in double-precision floating point format. When setting the parameters of

the filter, this array is only used if the format is set to ADQ_COEFFICIENT_FORMAT_DOUBLE.

coefficient_fixed_point[ADQ_MAX_NOF_FILTER_COEFFICIENTS] (int32_t)

The filter coefficients, in fixed point format. When setting the parameters of the filter, this array is

only used if the format is set to ADQ_COEFFICIENT_FORMAT_FIXED_POINT.

struct ADQFunctionParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQPatternGeneratorParameters pattern_generator[ADQ_MAX_NOF_PATTERN_GENERATORS];
struct ADQPulseGeneratorParameters pulse_generator[ADQ_MAX_NOF_PULSE_GENERATORS];
struct ADQTimestampSynchronizationParameters timestamp_synchronization;
struct ADQDaisyChainParameters daisy_chain;
struct ADQFractionalNPllParameters fractional_n_pll;
uint64_t magic;

}

Description

This is a high-level struct collecting the parameters of all the function modules of the digitizer. This

means that each member struct is also an object that may interact with the configuration functions (see

Section A.4.3). Refer to Section 7 for a high-level description of the various function modules.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_
FUNCTION. This is guaranteed if InitializeParameters() is called to initialize the parameter

set.

reserved (int32_t)

Reserved

pattern_generator[ADQ_MAX_NOF_PATTERN_GENERATORS] (struct ADQPatternGenerator-
Parameters)

An array of ADQPatternGeneratorParameters structs where each element represents the param-
eters for one pattern generator (see Section 7.1). The number of valid/active entries is given by

the constant parameter nof_pattern_generators.

ADQ3 Series Digitizers — User Guide spdevices.com Page 248 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

pulse_generator[ADQ_MAX_NOF_PULSE_GENERATORS] (struct ADQPulseGeneratorParameters)

An array of ADQPulseGeneratorParameters structs where each element represents the parame-
ters for one pulse generator (see Section 7.2). The number of valid/active entries is given by the

constant parameter nof_pulse_generators.

timestamp_synchronization (struct ADQTimestampSynchronizationParameters)

A ADQTimestampSynchronizationParameters struct holding the parameters of the timestamp

synchronization function. See Section 7.3 for a high-level description.

daisy_chain (struct ADQDaisyChainParameters)

A ADQDaisyChainParameters struct holding the parameters of the daisy chain function. See Sec-
tion 7.4 for a high-level description.

fractional_n_pll (struct ADQFractionalNPllParameters)

A ADQFractionalNPllParameters struct holding the parameters of the fractional-N PLL function.

See Section 7.5 for a high-level description.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQFractionalNPllParameters {
enum ADQParameterId id;
int32_t reserved;
double frequency;
uint64_t magic;

}

Description

This struct defines the parameters for the fractional-N PLL function. See Section 7.5 for a high-level

description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_
FRACTIONAL_N_PLL. This is guaranteed if InitializeParameters() is called to initialize the

parameter set.

reserved (int32_t)

Reserved

frequency (double)

The output frequency of the fractional-N PLL. The closest synthesizable frequency will be selected.

ADQ3 Series Digitizers — User Guide spdevices.com Page 249 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

The resulting frequency is readable by calling GetParameters(). If set to the special value of 0.0,
the PLL will be disabled. The default value is 0.0.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQPatternGeneratorParameters {
enum ADQParameterId id;
int32_t nof_instructions;
struct ADQPatternGeneratorInstruction instruction[ADQ_MAX_NOF_PATTERN_INSTRUCTIONS];
uint64_t magic;

}

Description

This struct defines the parameters for the pattern generator. See Section 7.1 for a high-level description.

There may be more than one pattern generator available, determined by nof_pattern_generators.
While the parameter definition is shared across all generators, they each have a distinct struct identifier

(id).

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to one of the following values:

• ADQ_PARAMETER_ID_PATTERN_GENERATOR0
• ADQ_PARAMETER_ID_PATTERN_GENERATOR1

This is guaranteed if InitializeParameters() is called to initialize the parameter set.

nof_instructions (int32_t) � Write-only

The number of pattern generator instructions. Valid values are 0,1, ..., 16. Setting nof_
instructions to zero will disable the pattern generator. This parameter is write-only.

instruction[ADQ_MAX_NOF_PATTERN_INSTRUCTIONS] (struct ADQPattern-
GeneratorInstruction)

� Write-only

An array of ADQPatternGeneratorInstruction structs where each element represents an instruc-
tion. This parameter is write-only.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 250 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQPatternGeneratorInstruction {
int64_t count;
int64_t count_prescaling;
enum ADQPatternGeneratorOperation op;
enum ADQEventSource source;
enum ADQEdge source_edge;
enum ADQEventSource reset_source;
enum ADQEdge reset_source_edge;
int32_t output_value;
int32_t output_value_transition;
int32_t reserved;

}

Description

This struct defines one pattern generator instruction.

Members

count (int64_t)

The number of events or time before the next instruction is loaded. The behavior of this parameter

depends on the op parameter:

ADQ_PATTERN_GENERATOR_OPERATION_TIMER

The count specifies the time in sampling periods until the next instruction is loaded. The

valid range depends on the digitizer model and its current firmware:

• ADQ30

– 1CH: valid range of [8,235 − 8], step size of 8

• ADQ32, ADQ33

– 2CH: valid range of [8,235 − 8], step size of 8

– 1CH: valid range of [16,236 − 16], step size of 16

• ADQ35

– 2CH: valid range of [16,236 − 16], step size of 16

– 1CH: valid range of [32,237 − 32], step size of 32

• ADQ36

– 4CH: valid range of [8,235 − 8], step size of 8

– 2CH: valid range of [16,236 − 16], step size of 16

ADQ_PATTERN_GENERATOR_OPERATION_EVENT

The count specified the number of events of the selected source until the next instruction

is loaded. Valid values are 1, ..., 232 − 1.

ADQ3 Series Digitizers — User Guide spdevices.com Page 251 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

count_prescaling (int64_t)

Prescaling of the count parameter. Valid values are 1, ..., 255. The default value is 1 (no scaling).

op (enum ADQPatternGeneratorOperation)

The instruction operation. Valid values are:

• ADQ_PATTERN_GENERATOR_OPERATION_EVENT
• ADQ_PATTERN_GENERATOR_OPERATION_TIMER

The default value is ADQ_PATTERN_GENERATOR_OPERATION_TIMER.

source (enum ADQEventSource)

The instruction event source. Only used if then operation is set to ADQ_PATTERN_GENERATOR_
OPERATION_EVENT. Valid values are:

• ADQ_EVENT_SOURCE_INVALID
• ADQ_EVENT_SOURCE_SOFTWARE
• ADQ_EVENT_SOURCE_TRIG
• ADQ_EVENT_SOURCE_PERIODIC
• ADQ_EVENT_SOURCE_SYNC
• ADQ_EVENT_SOURCE_GPIOA0
• ADQ_EVENT_SOURCE_GPIOB0
• ADQ_EVENT_SOURCE_PXIE_STARB
• ADQ_EVENT_SOURCE_PXIE_TRIG0
• ADQ_EVENT_SOURCE_PXIE_TRIG1
• ADQ_EVENT_SOURCE_REFERENCE_CLOCK
• ADQ_EVENT_SOURCE_MATRIX

The default value is ADQ_EVENT_SOURCE_INVALID.

source_edge (enum ADQEdge)

An ADQEdge which specifies the edge selection of the source. The default value is ADQ_EDGE_
RISING. Only used if the operation is set to ADQ_PATTERN_GENERATOR_OPERATION_EVENT.

reset_source (enum ADQEventSource)

The reset source of the instruction, see Section 7.1. Valid values are:

• ADQ_EVENT_SOURCE_INVALID
• ADQ_EVENT_SOURCE_SOFTWARE
• ADQ_EVENT_SOURCE_TRIG
• ADQ_EVENT_SOURCE_PERIODIC
• ADQ_EVENT_SOURCE_SYNC
• ADQ_EVENT_SOURCE_GPIOA0
• ADQ_EVENT_SOURCE_GPIOB0
• ADQ_EVENT_SOURCE_PXIE_STARB
• ADQ_EVENT_SOURCE_REFERENCE_CLOCK
• ADQ_EVENT_SOURCE_MATRIX

ADQ3 Series Digitizers — User Guide spdevices.com Page 252 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Only used if the operation is set to ADQ_PATTERN_GENERATOR_OPERATION_EVENT. The default value
is ADQ_EVENT_SOURCE_INVALID which disables the reset.

reset_source_edge (enum ADQEdge)

An ADQEdge which specifies the edge selection of the reset_source. The default value is ADQ_
EDGE_RISING. Only used if the operation is set to ADQ_PATTERN_GENERATOR_OPERATION_EVENT.

output_value (int32_t)

The value which the pattern generator will output during the instruction. Valid values are 0,1. The

default value is 0.

output_value_transition (int32_t)

The value which the pattern generator will output during the last cycle of the instruction. Valid

values are 0,1. The default value is 0.

reserved (int32_t)

Reserved

struct ADQPdParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQPdParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the PD signal processing module for all channels of the digitizer.

See Section 5.7 for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_PD. This
is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQPdParametersChannel)

An array of ADQPdParametersChannel structs where each element represents the parameters

for a channel. The struct at index zero targets the first channel. The constant parameter nof_
transfer_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the

ADQ3 Series Digitizers — User Guide spdevices.com Page 253 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

parameter set.

struct ADQPdParametersChannel {
enum ADQPolarity polarity;
int32_t area_leading_edge_window_length;
int32_t area_trailing_edge_window_length;
int32_t baseline;

}

Description

This struct is a member of ADQPdParameters and defines the PD signal processing module parameters

for a channel. See Section 5.7 for more information.

Members

polarity (enum ADQPolarity)

The value of this parameter should match the polarity of the unipolar pulses in the system. Valid

values are

• ADQ_POLARITY_POSITIVE (the default value); and
• ADQ_POLARITY_NEGATIVE.

area_leading_edge_window_length (int32_t)

The length of the leading edge window used when calculating the area of a pulse. The area

calculation will include the contributions from this number of samples before the leading edge

crossing event. The valid range is [0,64] and the default value is 0. See Section 5.7.7 for more

information.

area_trailing_edge_window_length (int32_t)

The length of the trailing edge window used when calculating the area of a pulse. The area cal-
culation will include the contributions from this number of samples after the trailing edge crossing

event. The valid range is [0,64] and the default value is 0. See Section 5.7.7 for more information.

baseline (int32_t)

The reference level to use when calculating the attributes of a pulse. The baseline is specified in

ADC codes in the range defined by the channel’s code_normalization value as[
− code_normalization

2
,
code_normalization

2
− 1

]

The default value is 0.

� Important

A correctly configured baseline is critically important for pulse analysis. If the digital baseline

stabilization is enabled (Section 5.3), the baseline should be set to the same target level.

ADQ3 Series Digitizers — User Guide spdevices.com Page 254 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Refer to Sections 5.7.5–5.7.7 for additional details.

struct ADQPdrxParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQPdrxParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the pulse detection range extension module for all channels of the

digitizer. See Section 5.5 for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_PDRX.
This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQPdrxParametersChannel)

An array of ADQPdrxParametersChannel structs where each element represents the parameters
for a channel. The struct at index zero targets the first channel. The constant parameter nof_
channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 255 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQPdrxParametersChannel {
int32_t enabled;
int32_t polarity;
int32_t equalizer_enabled;
int32_t reflection_filter_enabled;
int32_t ac_compensation_enabled;
int32_t reflection_delay;
int64_t dc_offset;
double gain;
double ac_compensation_filter_zero;
double ac_compensation_filter_pole;
double ac_compensation_pulse_level;
double ac_compensation_pulse_steepness;
double equalizer[ADQ_MAX_NOF_PDRX_EQUALIZER_COEFFICIENTS];
double reflection_filter[ADQ_MAX_NOF_PDRX_REFLECTION_FILTER_COEFFICIENTS];

}

Description

This struct is a member of ADQPdrxParameters and defines pulse detection range extension parameters
for a channel.

Members

enabled (int32_t)

For a channel that supports PDRX, this parameter enables or disables the core PDRX behavior

(see Section 5.5). Whether or not a channel supports PDRX is indicated by the channel-specific

constant parameter is_present. The other parameters in this group are only set (and validated)
if this parameter is set to a nonzero value. The default value is zero (disabled).

When activated, the channel’s normal data stream is replaced with a new stream that incor-

porates data from the neighboring high_gain_channel to achieve a higher dynamic range. The
user should no longer acquire data from the high gain channel when PDRX is active (although it

is still technically possible to do so).

The PDRX-specific signal processing blocks each have their own activation parameter in this

group. However, all of them require that PDRX is enabled for the signal processing to take effect.

polarity (int32_t)

This parameter specifies the polarity of the pulses. It should be set to ADQ_POLARITY_POSITIVE
for positive pulses and to ADQ_POLARITY_NEGATIVE for negative pulses. If the assumption about
unipolar pulses is not applicable, set the value to ADQ_POLARITY_INVALID to combine the channels
using symmetric limits. Refer to Section 5.5.2 for details.

equalizer_enabled (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 256 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

reflection_filter_enabled (int32_t)

Reserved

ac_compensation_enabled (int32_t)

Reserved

reflection_delay (int32_t)

Reserved

dc_offset (int64_t)

If any analog dc_offset is applied, this parameter must be set to the ADC code that corresponds

to 0 V. For 16-bit data, this is calculated as

dc_offset
input_range

· 216,

using the values from the channel-specific analog front-end parameters.

gain (double)

This parameter is used to correctly scale the data when combining the data streams from the high

gain and low gain channels. The parameter is only set (and validated) when enabled is set to a
nonzero value. The default value is the nominal gain difference between the two channels. See

Section 5.5.2 for more information.

ac_compensation_filter_zero (double)

Reserved

ac_compensation_filter_pole (double)

Reserved

ac_compensation_pulse_level (double)

Reserved

ac_compensation_pulse_steepness (double)

Reserved

equalizer[ADQ_MAX_NOF_PDRX_EQUALIZER_COEFFICIENTS] (double)

Reserved

reflection_filter[ADQ_MAX_NOF_PDRX_REFLECTION_FILTER_COEFFICIENTS] (double)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 257 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQPortParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQPortParametersPin pin[ADQ_MAX_NOF_PINS];
uint64_t magic;

}

Description

This structs defines the parameters of a port. See Section 8 for a high-level description. The parameter

definition is shared across all ports, but each one has a distinct struct identifier (id).

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to one of the following values:

• ADQ_PARAMETER_ID_PORT_TRIG
• ADQ_PARAMETER_ID_PORT_SYNC
• ADQ_PARAMETER_ID_PORT_SYNCO
• ADQ_PARAMETER_ID_PORT_SYNCI
• ADQ_PARAMETER_ID_PORT_CLK
• ADQ_PARAMETER_ID_PORT_CLKI
• ADQ_PARAMETER_ID_PORT_CLKO
• ADQ_PARAMETER_ID_PORT_GPIOA
• ADQ_PARAMETER_ID_PORT_GPIOB
• ADQ_PARAMETER_ID_PORT_PXIE
• ADQ_PARAMETER_ID_PORT_MTCA

This is guaranteed if InitializeParameters() is called to initialize the parameter set.

� Important

There is no digitizer that features every port in the list above. Refer to the corresponding entry

in the constant parameter array port to programmatically determine the availability.

reserved (int32_t)

Reserved

pin[ADQ_MAX_NOF_PINS] (struct ADQPortParametersPin)

An array of ADQPortParametersPin structs where each element represents the parameters of a
pin in the port. Some ports only have one pin (index 0) and some ports may have several. Refer

to the constant parameter nof_pins for the corresponding port to programmatically determine the
number of available pins.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the

ADQ3 Series Digitizers — User Guide spdevices.com Page 258 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

parameter set.

struct ADQPortParametersPin {
enum ADQImpedance input_impedance;
enum ADQDirection direction;
enum ADQFunction function;
int32_t value;
int32_t invert_output;
int32_t reserved;

}

Description

This struct is a member of ADQPortParameters and defines the parameters of a pin. See Section 8 for a
high-level description.

Members

input_impedance (enum ADQImpedance)

When the pin is configured as an input, this parameter determines the input impedance. The

default value depends on the port and pin.

� Note

Not all pins support a configurable input impedance.

direction (enum ADQDirection)

The I/O configuration of the pin. Not all pins support a configurable direction. For those that do,

ADQ_DIRECTION_IN configures the pin as an input and ADQ_DIRECTION_OUT configures the pin as
an output. When the output buffer is activated, the digitizer immediately begins driving the digital

output signal of whichever function is selected. The default value is ADQ_DIRECTION_IN.

� Note

Not all pins support a configurable direction.

function (enum ADQFunction)

The function selection that determines the output signal when the direction is set to ADQ_
DIRECTION_OUT. Not all functions are able to be selected by all the pins. Refer to Section 8 for a
list of which functions each pin supports. The default value is ADQ_FUNCTION_INVALID.

value (int32_t)

This parameter behaves differently depending on the configuration context:

GetParameters()
If the pin has input capabilities, the value will reflect the digital signal level of the pin: 0 for

logic low and 1 for logic high. This is true even if the pin is configured as an output, as long

as the pin can be configured as an input.

ADQ3 Series Digitizers — User Guide spdevices.com Page 259 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

SetParameters()
If the pin is configured as an output and its function is set to ADQ_FUNCTION_GPIO, the
value of this parameter will set the digital signal level of the pin. Specify 0 for logic low

and 1 for logic high. If the prerequisites are not met, the parameter is ignored.

invert_output (int32_t)

A boolean value indicating that the digital output signal should be inverted.

reserved (int32_t)

Reserved

struct ADQPulseGeneratorParameters {
enum ADQParameterId id;
enum ADQEventSource source;
enum ADQEdge edge;
int32_t reserved;
int64_t length;
uint64_t magic;

}

Description

This struct defines the parameters for the pulse generator. The pulse generator is disabled when source
is set to ADQ_EVENT_SOURCE_INVALID. See Section 7.2.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to one of the following values:

• ADQ_PARAMETER_ID_PULSE_GENERATOR0
• ADQ_PARAMETER_ID_PULSE_GENERATOR1
• ADQ_PARAMETER_ID_PULSE_GENERATOR2
• ADQ_PARAMETER_ID_PULSE_GENERATOR3

This is guaranteed if InitializeParameters() is called to initialize the parameter set.

source (enum ADQEventSource)

An ADQEventSource whose events are used to trigger a pulse. The default value is ADQ_EVENT_
SOURCE_INVALID. Not every event source can be used as a source. Valid values are:

• ADQ_EVENT_SOURCE_SOFTWARE
• ADQ_EVENT_SOURCE_TRIG
• ADQ_EVENT_SOURCE_PERIODIC
• ADQ_EVENT_SOURCE_SYNC
• ADQ_EVENT_SOURCE_GPIOA0
• ADQ_EVENT_SOURCE_GPIOB0

ADQ3 Series Digitizers — User Guide spdevices.com Page 260 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• ADQ_EVENT_SOURCE_PXIE_STARB
• ADQ_EVENT_SOURCE_PXIE_TRIG0
• ADQ_EVENT_SOURCE_PXIE_TRIG1
• ADQ_EVENT_SOURCE_REFERENCE_CLOCK
• ADQ_EVENT_SOURCE_MATRIX
• ADQ_EVENT_SOURCE_LEVEL_MATRIX

edge (enum ADQEdge)

An ADQEdge which specifies the edge selection of the source. The default value is ADQ_EDGE_
RISING.

reserved (int32_t)

Reserved

length (int64_t)

The length of the pulse in samples. Setting the length to -1 will generate a pulse with length equal

to that of the source. The valid range depends on the digitzer model and its current firmware:

• ADQ30

– 1CH: valid range of −1,8,16, ..., 219 − 8

• ADQ32, ADQ33

– 2CH: valid range of −1,8,16, ..., 219 − 8

– 1CH: valid range of −1,16,32, ..., 220 − 16

• ADQ35

– 2CH: valid range of −1,16,32, ..., 220 − 16

– 1CH: valid range of −1,32,64, ..., 221 − 32

• ADQ36

– 4CH: valid range of −1,8,16, ..., 219 − 8

– 2CH: valid range of −1,16,32, ..., 220 − 16

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 261 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQSampleSkipParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQSampleSkipParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the sample skip module for all channels of the digitizer. See Sec-

tion 5.2 for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_SAMPLE_
SKIP. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQSampleSkipParametersChannel)

An array of ADQSampleSkipParametersChannel structs where each element represents the pa-

rameters for a channel. The struct at index zero targets the first channel. The constant parameter

nof_acquisition_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQSampleSkipParametersChannel {
int64_t skip_factor;
enum ADQFunction synchronization_source;
int32_t reserved;

}

Description

This struct is a member of ADQSampleSkipParameters and defines sample skip parameters for a channel.

Members

skip_factor (int64_t)

The sample skip factor. The default value is 1, which implies no skipping. The valid range depends

on the digitizer model and its current firmware:

• ADQ30

ADQ3 Series Digitizers — User Guide spdevices.com Page 262 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

– 1CH: 1,2,4,5,8,9,10, ..., 222 − 1

• ADQ32, ADQ33

– 2CH: 1,2,4,5,8,9,10, ..., 222 − 1

– 1CH: 1,2,4,5,8,16,17,18, ..., 222 − 1

• ADQ35

– 2CH: 1,2,4,5,8,16,17,18, ..., 222 − 1

– 1CH: 1,2,4,5,8,16,32,33,34, ..., 222 − 1

• ADQ36

– 4CH: 1,2,4,5,8,9,10, ..., 222 − 1

– 2CH: 1,2,4,5,8,16,17,18, ..., 222 − 1

synchronization_source (enum ADQFunction)

The sample skip synchronization source. See Section 5.2 for a high-level description. The syn-

chronization may be disabled by setting the source to ADQ_FUNCTION_INVALID. Valid values are:

• ADQ_FUNCTION_INVALID
• ADQ_FUNCTION_TIMESTAMP_SYNCHRONIZATION

The default value is ADQ_FUNCTION_TIMESTAMP_SYNCHRONIZATION.

reserved (int32_t)

Reserved

struct ADQSignalProcessingParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQDigitalGainAndOffsetParameters gain_offset;
struct ADQSampleSkipParameters sample_skip;
struct ADQDbsParameters dbs;
struct ADQPdrxParameters pdrx;
struct ADQFirFilterParameters fir_filter;
struct ADQAtdParameters atd;
struct ADQPdParameters pd;
uint64_t magic;

}

Description

This is a high-level struct collecting the parameters of all the signal processing modules of the digitizer.

This means that each member struct is also an object that may interact with the configuration functions

(see Section A.4.3). Refer to Section 5 for a high-level description of the various function modules.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_SIGNAL_

ADQ3 Series Digitizers — User Guide spdevices.com Page 263 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

PROCESSING. This is guaranteed if InitializeParameters() is called to initialize the parameter

set.

reserved (int32_t)

Reserved

gain_offset (struct ADQDigitalGainAndOffsetParameters)

A ADQDigitalGainAndOffsetParameters struct representing the parameters of the digital gain

and offset module (see Section 5.1).

sample_skip (struct ADQSampleSkipParameters)

A ADQSampleSkipParameters struct representing the parameters of the sample skip module (see
Section 5.2).

dbs (struct ADQDbsParameters)

A ADQDbsParameters struct representing the parameters of the digital baseline stabilization mod-
ule (see Section 5.3).

pdrx (struct ADQPdrxParameters)

A ADQPdrxParameters struct representing the parameters of the pulse detection range extension
feature (see Section 5.5).

fir_filter (struct ADQFirFilterParameters)

A ADQFirFilterParameters struct representing the parameters of the FIR filter module (see Sec-

tion 5.4).

atd (struct ADQAtdParameters)

A ADQAtdParameters struct representing the parameters of the ATD signal processing module

(see Section 5.6).

pd (struct ADQPdParameters)

A ADQAtdParameters struct representing the parameters of the PD signal processing module (see

Section 5.7).

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 264 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQTestPatternParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQTestPatternParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters of the test pattern module for all channels of the digitizer. See Sec-

tion 11 for a high-level description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_TEST_
PATTERN. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

reserved (int32_t)

Reserved

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQTestPatternParametersChannel)

An array of ADQTestPatternParametersChannel structs where each element represents the pa-
rameters for a channel. The struct at index zero targets the first channel. The constant parameter

nof_channels holds the number of valid entries.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQTestPatternParametersChannel {
enum ADQTestPatternSource source;
int32_t reserved;
struct ADQTestPatternParametersPulse pulse;

}

Description

This struct is amember of ADQTestPatternParameters and defines test pattern parameters for a channel.

Members

source (enum ADQTestPatternSource)

The test pattern source as a value from the enumeration ADQTestPatternSource. The default

value is ADQ_TEST_PATTERN_SOURCE_DISABLE which implies ADC data.

ADQ3 Series Digitizers — User Guide spdevices.com Page 265 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

reserved (int32_t)

Reserved

pulse (struct ADQTestPatternParametersPulse)

A ADQTestPatternParametersPulse struct representing the parameters for the test pattern pulse
generator. This parameter is only used when the source is set to one of the pulse generator

modes. Otherwise, it is ignored.

struct ADQTestPatternParametersPulse {
int64_t baseline;
int64_t amplitude;
int64_t period;
int64_t width;
int64_t nof_pulses_in_burst;
int64_t nof_bursts;
int64_t burst_period;
int64_t burst_baseline;
int64_t prbs_amplitude_seed;
int64_t prbs_amplitude_scale;
int64_t prbs_width_seed;
int64_t prbs_width_scale;
int64_t prbs_noise_seed;
int64_t prbs_noise_scale;
int32_t trigger_mode_enabled;
int32_t reserved;

}

Description

This struct is a member of ADQTestPatternParametersChannel and defines the parameters for the test
pattern pulse generator. This feature is not yet supported.

struct ADQTimestampSynchronizationParameters {
enum ADQParameterId id;
enum ADQEventSource source;
enum ADQEdge edge;
enum ADQSynchronizationMode mode;
enum ADQArm arm;
int32_t reserved;
uint64_t seed;
uint64_t magic;

}

Description

This struct defines the parameters for the timestamp synchronization. See Section 7.3 for a high-level

ADQ3 Series Digitizers — User Guide spdevices.com Page 266 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

description.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_
TIMESTAMP_SYNCHRONIZATION. This is guaranteed if InitializeParameters() is called to

initialize the parameter set.

source (enum ADQEventSource)

The event source used for timestamp synchronization. Valid values are:

• ADQ_EVENT_SOURCE_INVALID (synchronization disabled)
• ADQ_EVENT_SOURCE_SOFTWARE
• ADQ_EVENT_SOURCE_TRIG
• ADQ_EVENT_SOURCE_PERIODIC
• ADQ_EVENT_SOURCE_SYNC
• ADQ_EVENT_SOURCE_GPIOA0
• ADQ_EVENT_SOURCE_GPIOB0
• ADQ_EVENT_SOURCE_PXIE_STARB
• ADQ_EVENT_SOURCE_PXIE_TRIG0
• ADQ_EVENT_SOURCE_PXIE_TRIG1
• ADQ_EVENT_SOURCE_REFERENCE_CLOCK
• ADQ_EVENT_SOURCE_MATRIX
• ADQ_EVENT_SOURCE_PATTERN_GENERATOR0
• ADQ_EVENT_SOURCE_PATTERN_GENERATOR1

The default value is ADQ_EVENT_SOURCE_INVALID.

edge (enum ADQEdge)

An ADQEdge which specifies the edge sensitivity of the source. The default value is ADQ_EDGE_
RISING.

mode (enum ADQSynchronizationMode)

Selects the timestamp synchronization mode. Valid values are:

• ADQ_SYNCHRONIZATION_MODE_DISABLE
• ADQ_SYNCHRONIZATION_MODE_FIRST
• ADQ_SYNCHRONIZATION_MODE_ALL

The default value is ADQ_SYNCHRONIZATION_MODE_DISABLE.

arm (enum ADQArm)

Specifies when the timestamp synchronization should be armed and ready to react to events from

the selected event source. Valid values are:

• ADQ_ARM_IMMEDIATELY
• ADQ_ARM_AT_ACQUISITION_START

ADQ3 Series Digitizers — User Guide spdevices.com Page 267 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

The default value is ADQ_ARM_IMMEDIATELY.

reserved (int32_t)

Reserved

seed (uint64_t)

Sets the seed value for the timestamp synchronization. Following a synchronization event, the

timestamp is set to this value. The unit is 1/16 of the sampling period. The default value is 0.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

struct ADQSystemManagerParameters {
enum ADQParameterId id;
enum ADQFanMode fan_mode;
int32_t fan_speed;
int32_t reserved;

}

Description

This struct defines the parameters of the system manager.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_SYSTEM_
MANAGER. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

fan_mode (enum ADQFanMode)

An ADQFanMode which specifies the on-board fan behavior. Supported values are:

ADQ_FAN_MODE_AUTO

The fan speed is controlled automatically by the system manager. The fan_speed param-
eter is ignored. This is the default value.

ADQ_FAN_MODE_CONSTANT

The fan speed is set to the constant value specified by the fan_speed parameter.

If an overtemperature fault occurs (see Section 12.3.2), the fan mode is ignored and the fan speed

is set to 100%.

fan_speed (int32_t)

The fan speed as a percentage of the maximum speed. In a call to SetParameters(), the fan_
mode must be set to ADQ_FAN_MODE_CONSTANT for this value to take effect. In a call to Get-

ADQ3 Series Digitizers — User Guide spdevices.com Page 268 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Parameters(), this parameter holds the current fan speed. The speed is ramped to the target

value over a period of time (seconds). This means that reading the fan speed immediately after

setting it may report a different value.

There is a lower bound to the fan speed below which the fan stops and values between zero

and this bound will have no effect. This lower bound can differ between models, i.e. ADQ32 may

have a different lower bound than ADQ35.

� Note

Setting the fan speed is not supported for ADQ36.

reserved (int32_t)

Reserved

struct ADQBufferAddress {
enum ADQParameterId id;
enum ADQBufferAction action;
void * virtual_address;
uint64_t bus_address;
int64_t size;
uint64_t magic;

}

Description

This struct defines the parameters for manual record buffer allocation.

� Important

The ADQBufferAddress parameter set is considered experimental and should only be used when there

is a specific need. For normal operation it’s recommend to let theAPI automatically manage the record

buffer allocation.

Members

id (enum ADQParameterId)

The struct identification number. This value should always be set to ADQ_PARAMETER_ID_BUFFER_
ADDRESS. This is guaranteed if InitializeParameters() is called to initialize the parameter set.

action (enum ADQBufferAction)

An ADQBufferAction which specifies the action to be performed on the buffer. Supported values
are:

ADQ_BUFFER_ACTION_HUGEPAGE_MMAP

Allocate a hugepage with the specified size. The bus address and the virtual address of
the hugepage is returned in bus_address and virtual_address respectively.

ADQ3 Series Digitizers — User Guide spdevices.com Page 269 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ADQ_BUFFER_ACTION_HUGEPAGE_MUNMAP

Free the hugepage pointed to by the virtual_address. The other parameters are ignored.
The hugepage must have been previously allocated by ADQ_BUFFER_ACTION_HUGEPAGE_
MMAP.

ADQ_BUFFER_ACTION_HUGEPAGE_LOOKUP

Look up the bus address of a hugepage allocated by the user. The virtual_address
parameter must be set to the virtual address of the hugepage. The bus address is returned

in the bus_address parameter.

virtual_address (void *)

The user space pointer to the buffer memory. Depending on the action this is either provided by
the user or returned by the API.

bus_address (uint64_t)

The bus address of the buffer pointed to by the virtual_address.

size (int64_t)

The size of buffer memory, in bytes. This parameter is only used when the action is set to ADQ_
BUFFER_ACTION_HUGEPAGE_MMAP.

magic (uint64_t)

A magic number to indicate the end of the parameter struct. This value should always be set to

ADQ_PARAMETERS_MAGIC. This is guaranteed if InitializeParameters() is called to initialize the
parameter set.

ADQ3 Series Digitizers — User Guide spdevices.com Page 270 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.3.3 Status

This section lists the structures used to communicate information about the status of the digitizer. See

Section 15 for a description of the context in which these objects are used.

struct ADQAcquisitionStatus {
int64_t acquired_records[ADQ_MAX_NOF_CHANNELS];

}

Description

This structure defines the acqusition status. See GetStatus().

Members

acquired_records[ADQ_MAX_NOF_CHANNELS] (int64_t)

The number of acquired records per channel. The record counter will wrap around to zero after

4294967295 records (232 − 1).

struct ADQDataReadoutStatus {
uint32_t flags;

}

Description

This struct holds status information about a record buffer and the health of the transfer process for a

specific channel. It is the type of the output parameter status in the function WaitForRecordBuffer().

Members

flags (uint32_t)

This member is a 32-bit wide bit field holding status flags. An “all clear” status is represented by

all bits being cleared (set to zero). ADQ_DATA_READOUT_STATUS_FLAGS_OK is an alias for this value.

Bit 0 ADQ_DATA_READOUT_STATUS_FLAGS_STARVING

The channel is starved for memory. There is not a sufficient amount of buffers in circulation,

causing incoming data to (eventually) be discarded, see Section 10.6 for more information.

Bit 1 ADQ_DATA_READOUT_STATUS_FLAGS_INCOMPLETE

The record is incomplete. Its header will be invalid and set to NULL. This value is only

possible if the parameter incomplete_records_enabled is set to a nonzero value. See

Section 10.5.7 for details.

Bit 2 ADQ_DATA_READOUT_STATUS_FLAGS_DISCARDED

A record was discarded due to incomplete data. This is either caused by

• an overflow of the device-to-host interface (Section 10.6); or

• an overflow of the record buffer due to its size reaching record_buffer_size_max.

ADQ3 Series Digitizers — User Guide spdevices.com Page 271 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

This value is only possible if incomplete_records_enabled is zero (default).

struct ADQDramStatus {
uint64_t fill;
uint64_t fill_max;

}

Description

This struct defines the DRAM status. The DRAM status is sampled when GetStatus() is called.

Members

fill (uint64_t)

The current fill level of the DRAM in bytes.

fill_max (uint64_t)

The current maximum fill level of the DRAM in bytes. The maximum value is reset when Start-
DataAcquisition() is called.

struct ADQOverflowStatus {
int32_t overflow;
int32_t reserved;

}

Description

This stucture defines the overflow status. See GetStatus().

Members

overflow (int32_t)

DRAM overflow if nonzero.

reserved (int32_t)

Reserved

struct ADQP2pStatus {
struct ADQP2pStatusChannel channel[ADQ_MAX_NOF_CHANNELS];
uint32_t flags;
int32_t reserved;

}

Description

This struct holds status information about the peer-to-peer transfer process. It is the type of the output

parameter status in the function WaitForP2pBuffers().

ADQ3 Series Digitizers — User Guide spdevices.com Page 272 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Members

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQP2pStatusChannel)

An array of ADQP2pStatusChannel structs where each element represent the peer-to-peer transfer
status of a channel.

flags (uint32_t)

Reserved

reserved (int32_t)

Reserved

struct ADQP2pStatusChannel {
uint32_t flags;
int32_t nof_completed_buffers;
int16_t completed_buffers[ADQ_MAX_NOF_BUFFERS];

}

Description

This struct is a member of ADQP2pStatus and holds the status information about the peer-to-peer transfer
process of a channel. Refer to the documentation for WaitForP2pBuffers() for additional details.

Members

flags (uint32_t)

Reserved

nof_completed_buffers (int32_t)

The number of completed buffers. This parameter specifies the number of valid entries in the

array completed_buffers.

completed_buffers[ADQ_MAX_NOF_BUFFERS] (int16_t)

An array of buffer indexes indicating which buffers hold data available for reading. The number of

valid entries is specified by nof_completed_buffers, e.g. four completed buffers indicates that
entries 0, 1, 2 and 3 each holds the index of one of the four completed buffers.

ADQ3 Series Digitizers — User Guide spdevices.com Page 273 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQTemperatureStatus {
int32_t nof_sensors;
int32_t overtemperature_fault;
int32_t nof_unrecoverable_overtemperature_faults;
int32_t reserved;
struct ADQTemperatureStatusSensor sensor[ADQ_MAX_NOF_TEMPERATURE_SENSORS];

}

Description

This struct contains the status of the digitizer’s temperature sensors. See GetStatus().

Members

nof_sensors (int32_t)

The number of valid entries in sensor.

overtemperature_fault (int32_t)

This member is set to 1 if any of the overtemperature faults described in Section 12.3.2 have

triggered. Otherwise, the value is set to 0.

nof_unrecoverable_overtemperature_faults (int32_t)

This member holds the number of unrecoverable overtemperature faults (Section 12.3.2) ob-

served in the lifetime of the digitizer.

reserved (int32_t)

Reserved

sensor[ADQ_MAX_NOF_TEMPERATURE_SENSORS] (struct ADQTemperatureStatusSensor)

An array of ADQTemperatureStatusSensor structs where each element represents a temperature
sensor on the digitizer. The constant parameter nof_sensors holds the number of valid entries.

struct ADQTemperatureStatusSensor {
char label[32];
float value;
float overtemperature_margin;

}

Description

This struct is a member of ADQTemperatureStatus and holds the status of a single temperature sensor.

Members

label[32] (char)
The label of the temperature sensor as a zero-terminated array ofASCII characters, i.e. a C-string.

ADQ3 Series Digitizers — User Guide spdevices.com Page 274 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

value (float)
The current temperature of the sensor, in degrees Celsius.

overtemperature_margin (float)

The current overtemperature margin of the sensor, in degrees Celsius. When this value reaches

zero (for any monitored sensor), the recoverable overtemperature fault will be triggered.

Not all temperature sensors are monitored. The overtemperature_margin for an unmonitored

sensor will be set to positive infinity (according to IEEE-754) such that

overtemperature_margin > 0

will always hold true. Refer to Sections 12.3.1 and 12.3.2 for more information.

struct ADQClockSystemStatus {
int32_t nof_plls;
int32_t reserved;
struct ADQClockSystemStatusPll pll[ADQ_MAX_NOF_PLLS];
double reference_source_frequency_estimate;

}

Description

This struct contains the status of the digitizer’s clock system. See GetStatus().

Members

nof_plls (int32_t)

The number of valid entries in pll.

reserved (int32_t)

Reserved

pll[ADQ_MAX_NOF_PLLS] (struct ADQClockSystemStatusPll)

An array of ADQClockSystemStatusPll structs where each element represents a PLL in the digi-
tizer’s clock system. The constant parameter nof_plls holds the number of valid entries.

reference_source_frequency_estimate (double)

An estimate of the frequency of the currently selected reference_source, in units of Hz. If a

reference source is not used in the current clock system configuration, or if the configuration does

not support measuring the reference source frequency, the value will be set to −1.0.

ADQ3 Series Digitizers — User Guide spdevices.com Page 275 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQClockSystemStatusPll {
int32_t lock_detect;
int32_t lock_lost_alarm;

}

Description

This struct is a member of ADQClockSystemStatus and holds the status of a single PLL in the digitizer’s
clock system.

Members

lock_detect (int32_t)

The lock detection status of the PLL, where

• 1 indicates that the PLL is currently locked,

• 0 indicates that the PLL is unlocked; and

• −1 indicates that the PLL is not used in the current clock system configuration.

lock_lost_alarm (int32_t)

An alarm state for the PLL where

• 1 that the PLL has lost its lock at some point since the alarm was last cleared,

• 0 indicates that no loss of lock has occured; and

• −1 indicates that the PLL is not used in the current clock system configuration, or that the

PLL does not support the alarm feature.

The alarm is cleared after each read of ADQClockSystemStatus via GetStatus(), and also after
each reconfiguration of the ADQClockSystemParameters.

struct ADQTimestampSynchronizationStatus {
int32_t counter;
int32_t reserved;

}

Description

This structure defines the timestamp synchronization status. See GetStatus().

Members

counter (int32_t)

The number of times the timestamp has been synchronized. The value is only valid if the times-

tamp synchronization mechanism (see Section 7.3) is active.

reserved (int32_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 276 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQDaisyChainStatus {
int32_t setup_time_warning;
int32_t rearm_error;

}

Description

This structure defines the daisy chain status. See GetStatus() and Section 7.4.8 for more information.

Members

setup_time_warning (int32_t)

This value is asserted if a secondary digitizer has received an edge of the daisy chain signal close

to the edge of the refrence clock and zero otherwise. The value is sticky and is reset when read.

� Important

This value is only valid for secondary digitizers.

rearm_error (int32_t)

This value is asserted if the primary digitizer’s daisy chain signal propagation module has detected

a trigger event during its rearm period and zero otherwise. The value is sticky and is reset when

read.

� Important

This value is only valid for the primary digitizer.

struct ADQLicenseStatus {
int32_t valid;
int32_t reserved;

}

Description

This struct contains the status of the digitizer’s license information. See GetStatus().

Members

valid (int32_t)

A boolean value which indicates whether or not the licenses stored in the digitizer’s nonvolatile

memory is valid (and sufficient) to run the active firmware.

• When the value is 1, the available licenses fulfill the requirements of the active firmware.

• When the value is 0, the available licenses do not fulfill the requirements of the active

firmware.

� Important

Acquiring data will not be possible when this value is 0.

ADQ3 Series Digitizers — User Guide spdevices.com Page 277 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

reserved (int32_t)

Reserved

struct ADQDbsStatus {
struct ADQDbsStatusChannel sensor[ADQ_MAX_NOF_CHANNELS];

}

Description

This struct contains the status of the DBS signal processing module. See GetStatus().

Members

sensor[ADQ_MAX_NOF_CHANNELS] (struct ADQDbsStatusChannel)

An array of ADQDbsStatusChannel structs where each element represents the DBS signal pro-

cessing module for one of the channels of the digitizer. The constant parameter nof_channels
holds the number of valid entries.

struct ADQDbsStatusChannel {
int32_t tracking_level;
int32_t tracking_update_counter;
int32_t has_observed_overrange_samples;
int32_t has_observed_saturated_samples;
int32_t has_ignored_samples;
int32_t has_accepted_samples;

}

Description

This struct is a member of ADQDbsStatus and holds the status for the DBS signal processing module of

a single channel.

Members

tracking_level (int32_t)

Gives the latest estimate of the incoming DC level as estimated by DBS. The value is rounded to

sample resolution and does not represent the full resolution used internally in DBS.

tracking_update_counter (int32_t)

A 16 bit (wrapping) counter of how many tracking updates DBS has generated since it was en-

abled.

has_observed_overrange_samples (int32_t)

A nonzero value indicates that DBS has observed at least one sample tagged as overrange since

it was enabled.

ADQ3 Series Digitizers — User Guide spdevices.com Page 278 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

has_observed_saturated_samples (int32_t)

A nonzero value indicates that DBS has observed at least one sample with a value outside the

saturation thresholds since it was enabled.

has_ignored_samples (int32_t)

A nonzero value indicates that DBS has ignored at least one sample during tracking since it

was enabled, with the ignore conditions determined by ignore_overrange_samples and ignore_
saturated_samples.

has_accepted_samples (int32_t)

A nonzero value indicates that DBS has accepted samples as valid for tracking since it was en-

abled.

ADQ3 Series Digitizers — User Guide spdevices.com Page 279 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.3.4 Data

This section lists the structures used to represent the data transferred by the digitizer. See Section 15

for a description of the context in which these objects are used.

struct ADQGen4Record {
struct ADQGen4RecordHeader * header;
void * data;
uint64_t size;

}

Description

This struct defines the expected memory format of a record buffer rotating in the WaitForRecord-
Buffer() / ReturnRecordBuffer() interface.

Members

header (struct ADQGen4RecordHeader *)

A pointer to an ADQGen4RecordHeader.

� Important

This member only points to valid memory if metadata is enabled, i.e. the data transfer parameter

metadata_enabled is set to a nonzero value. Otherwise, it is set to NULL. Make sure to not

access this member if metadata is disabled. It is also set to NULL for an incomplete record

(Section 10.5.7), which is indicated by the data readout status flags signaling ADQ_DATA_
READOUT_STATUS_FLAGS_INCOMPLETE.

data (void *)
Apointer to a memory region holding the record data. The member sizemust be set to the size of

this region. This is handled automatically if theAPI is tasked with managing the memory (memory_
owner is set to ADQ_MEMORY_OWNER_API). In that case it is instead important to never change the

value.

The header field data_format should be used to interpret the memory region. For example, if
the value is ADQ_DATA_FORMAT_INT16, the region contains 16-bit signed integer values and should
be traversed using a matching pointer type.

� Important

When manually allocating record buffers, make sure to set the value of size to the size of the
memory region pointed to by data.

size (uint64_t)

The size (in bytes) of the memory region pointed to by data. This is not the amount of data

available for reading, but rather the capacity of the record buffer. The number of bytes available

for reading is returned by WaitForRecordBuffer().

ADQ3 Series Digitizers — User Guide spdevices.com Page 280 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

struct ADQGen4RecordHeader {
uint8_t version_major;
uint8_t version_minor;
uint16_t timestamp_synchronization_counter;
uint16_t general_purpose_start;
uint16_t general_purpose_stop;
uint64_t timestamp;
int64_t record_start;
uint32_t record_length;
uint8_t user_id;
uint8_t misc;
uint16_t record_status;
uint32_t record_number;
uint8_t channel;
uint8_t data_format;
char serial_number[10];
uint64_t sampling_period;
double time_unit;
uint32_t firmware_specific;
int32_t reserved;

}

Description

The header structure contained in an ADQGen4Record. Some members require post processing to be

valid. This processing is not available when the data transfer interface (Section 10.4) is used. Such

members are marked “� Data transfer”. The absence of any symbol implies that the member is valid for

both the data readout and data transfer processes.

� Note

This definition is valid for header version 2.0.

Members

version_major (uint8_t) � Data transfer

The major version number, i.e. 2 in 2.0. The full version number denotes binary compatibility

between definitions of this data type and follows these rules:

• Two headers with different major version number cannot be parsed using the same defini-

tion. The major version number is incremented on a size change, or if any existing members

change their name or type.

• Two headers with differentminor version number can be partially understood using the lower

definition. It is implied that the headers are of the same size, and that the existing (valid)

members are the same. There are few circumstances when the minor version number is

incremented, but one such case is when a reserved field is implemented.

ADQ3 Series Digitizers — User Guide spdevices.com Page 281 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

version_minor (uint8_t) � Data transfer

The minor version number, i.e. 0 in 2.0. See version_major for additional details.

timestamp_synchronization_counter (uint16_t)

If the timestamp synchronization mechanism (see Section 7.3) is active, this field will hold the

number of times that the timestamp had been synchronized when the record was acquired.

general_purpose_start (uint16_t)

Reserved

general_purpose_stop (uint16_t)

Reserved

timestamp (uint64_t) � Data transfer

The timestamp of the trigger event, expressed in time units (time_unit).

record_start (int64_t) � Data transfer

The time between the trigger event and the first sample in the record, expressed in time units

(time_unit). This means that the timestamp of the first sample in the record is the sum of the

values of timestamp and record_start. See (24) and Section 9.3 for more information. Only

valid when the data readout interface is used (see Section 10.5).

• A value less than zero implies that the first sample in the record was acquired before the

trigger event occurred (pretrigger).

• A value equal to zero implies that the first sample in the record was acquired precisely when

the trigger event occurred.

• A value greater than zero implies that the first sample in the record was acquired after the

trigger event occurred (trigger delay).

record_length (uint32_t)

The length of the record, expressed in samples.

user_id (uint8_t)

An 8-bit value that may be set from the development kit.

misc (uint8_t)

A bit field containing miscellanous information:

Bits 7–4:

Reserved

Bits 3–0:

The state (logic level) of the pattern generator outputs (Section 7.1) at the time when the

record was acquired. Each pattern generator claims one bit in the range with the state of

ADQ_FUNCTION_PATTERN_GENERATOR0 at bit 0 and so on.

ADQ3 Series Digitizers — User Guide spdevices.com Page 282 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

record_status (uint16_t)

A bit field containing assorted information about the record itself, or the digitizer at the time of

acquisition.

Bits 15-8:

Reserved

Bits 7-5:

This 3-bit field holds the fill factor of the digitizer’s on-board memory. The value is given in

eight discrete steps 0–7 and signifies that at least N/8 of the total memory capacity (given

by dram_size) was filled when this record was acquired.
Themacro ADQ_RECORD_STATUS_FILL_FACTOR is provided to ease extraction of this 3-bit

value. Pass the entire bit field record_status as its argument to get a value in the range
0–7.

Bit 4:

Reserved

Bit 3:

This bit is asserted if the record was triggered by a rising edge event (ADQ_EDGE_RISING)
from the selected trigger_source. This is useful to differentiate between records when

the trigger_edge is set to ADQ_EDGE_BOTH.
To check for a rising edge trigger condition, mask record_status with ADQ_RECORD_

STATUS_RISING_EDGE and test for a nonzero value.

Bit 2:

This bit is asserted if one or several samples in the record have saturated at the maximum

or minimum value when their actual values cannot be represented in the available range.

To check for an overrange condition, mask record_status with ADQ_RECORD_STATUS_
OVERRANGE and test for a nonzero value.

� Note

If the digitizer is running the FWATD firmware (Section 5.6), this bit indicates an arithmetic

overflow, i.e. that the accumulation process was forced to saturate the data. Thus, it

signals that (at least) one sample in an accumulation result record has saturated, not

that a record with an overrange condition has been accumulated.

Bit 1:

Reserved

Bit 0:

This bit is asserted when the record is incomplete and has lost data at the end. The data

readout interface discards these records by default (Section 10.5.6) but this behavior can

be changed by allowing incomplete records to propagate (Section 10.5.7). Records with

missing data are the result of an overflow condition when the digitizer has been configured

ADQ3 Series Digitizers — User Guide spdevices.com Page 283 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

to keep the acquisition going, rather than to stop (the default behavior). See Section 10.6.3

for additional details.

To check for this condition condition, mask record_status with ADQ_RECORD_STATUS_
LOST_DATA and test for a nonzero value.

record_number (uint32_t)

The record number as a 32-bit unsigned value. The first record acquired after StartData-
Acquisition() will have this field set to zero. When the data transfer interface is used (see

Section 10.4) the value will be limited to 16 bits.

� Important

The record number wraps to zero at the maximum value.

channel (uint8_t) � Data transfer

The channel from which the record originated.

data_format (uint8_t) � Data transfer

The format of the record data.

ADQ_DATA_FORMAT_INT16

The record data consists of samples with a 16-bit 2’s complement representation.

ADQ_DATA_FORMAT_INT32

The record data consists of samples with a 32-bit 2’s complement representation.

ADQ_DATA_FORMAT_PULSE_ATTRIBUTES

The record data consists of ADQPulseAttributes objects. Records with this data format
are only generated by the FWPD firmware, see Section 5.7.

8–32

A value in the range from 8 to 32 signals that the record data consists of compressed

samples whose size (in bits) is equal to the value of data_format. See Section 10.8 for

more information.

serial_number[10] (char) � Data transfer

The digitizer’s serial number as a zero-terminated array of ASCII characters, i.e. a C-string. For

example, ”SPD-09999”.

sampling_period (uint64_t) � Data transfer

The time between two samples, expressed in time units (time_unit).

time_unit (double) � Data transfer

The value of a time unit in seconds. The header fields timestamp, record_start and sampling_
period are integer values which may be converted to seconds by multiplying with the time unit.

ADQ3 Series Digitizers — User Guide spdevices.com Page 284 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

firmware_specific (uint32_t) � Data transfer

A 32-bit value whose contents is specific to the current firmware (Section 1.3).

• FWDAQ: Reserved, reads as zero.
• FWPD: Reserved, reads as zero.
• FWATD: An unsigned 32-bit value indicating the number of accumulations in the record. This
value should be used to normalize the data when converting to a voltage. Refer to Sec-

tion 5.6.2 and (4).

The value can differ from the value of nof_accumulations due to the FWATD overflow

mechanism (Section 5.6.6).

reserved (int32_t) � Data transfer

Reserved

struct ADQGen4RecordArray {
struct ADQGen4Record ** record;
int32_t nof_records;

}

Description

This struct defines the expected memory format of a record buffer array rotating in the WaitForRecord-
Buffer() / ReturnRecordBuffer() interface when the parameter nof_record_buffers_in_array is set
to a nonzero value.

Members

record (struct ADQGen4Record **)

A pointer to the start of an array of pointers where each element points to an ADQGen4Record
object.

nof_records (int32_t)

The number of valid records in the record array.

struct ADQPulseAttributes {
int32_t area;
uint32_t peak_position;
uint16_t peak;
uint16_t fwhm;
uint8_t status;
uint8_t reserved[3];

}

Description

This struct defines the memory format for pulse attributes extracted by the PD signal processing module

(exclusive to the FWPD firmware). A record’s data region contains objects of this type when its header

ADQ3 Series Digitizers — User Guide spdevices.com Page 285 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

field data_format is set to ADQ_DATA_FORMAT_PULSE_ATTRIBUTES. See Section 5.7 for additional details.

Members

area (int32_t)

The area of the pulse measured in ADC codes relative to the baseline. The configured polarity
affects how this area is calculated. Negative values are possible. Refer to Section 5.7.7 for more

information.

peak_position (uint32_t)

The position of the peak value relative to the first sample in the record, given as an offset measured
in samples. Where the peak is located on the digitizer’s timing grid (Section 9.3) can be expressed
as

timestamp+ record_start+ peak_position · sampling_period.

Refer to Section 5.7.5 for more information.

peak (uint16_t)

The absolute value of the peak (extreme value) relative to the baseline. Refer to Section 5.7.5
for more information.

fwhm (uint16_t)

The full width at half maximum, as defined by the peak value. Refer to Section 5.7.6 for more

information.

status (uint8_t)

A bit field containing status information about the attributes.

Bits 7-1:

Reserved

Bit 0:

This bit is asserted if all of the attributes are valid. If the bit is zero, one or several attributes

are invalid and cannot be trusted. To check for valid attribute data, mask status with ADQ_
PULSE_ATTRIBUTES_STATUS_VALID and test for a nonzero value. See Section 5.7.4 for more
information.

reserved[3] (uint8_t)

Reserved

ADQ3 Series Digitizers — User Guide spdevices.com Page 286 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.3.5 Other

This section lists structures used for setting up and managing the digitizer.

struct ADQInfoListEntry {
enum ADQHWIFEnum HWIFType;
enum ADQProductID_Enum ProductID;
unsigned int VendorID;
unsigned int AddressField1;
unsigned int AddressField2;
char[64] DevFile;
unsigned int DeviceInterfaceOpened;
unsigned int DeviceSetupCompleted;

}

Description

This struct defines the device information entry of the adq_info_list returned by ADQControlUnit_
ListDevices().

ADQ3 Series Digitizers — User Guide spdevices.com Page 287 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4 Functions

This section lists the data structures used when configuring and controlling the digitizer. These are de-

fined in the ADQAPI header file ADQAPI.h and versioned by the two constants ADQAPI_VERSION_MAJOR
and ADQAPI_VERSION_MAJOR. See ADQAPI_ValidateVersion() for more information about how to imple-

ment version control in the user application space.

General . 290

ADQAPI_ValidateVersion . 290

Identification . 291

CreateADQControlUnit . 291

ADQControlUnit_EnableErrorTrace . 291

ADQControlUnit_ListDevices . 292

ADQControlUnit_SetupDevice . 292

Parameter Interface . 294

InitializeParameters . 294

InitializeParametersString . 295

InitializeParametersFilename . 296

GetParameters . 296

GetParametersString . 297

GetParametersFilename . 298

SetParameters . 299

SetParametersString . 299

SetParametersFilename . 300

ValidateParameters . 301

ValidateParametersString . 301

ValidateParametersFilename . 302

Data Acquisition . 303

StartDataAcquisition . 303

StopDataAcquisition . 303

Data Transfer . 305

WaitForP2pBuffers . 305

UnlockP2pBuffers . 305

Data Readout . 307

WaitForRecordBuffer . 307

ReturnRecordBuffer . 309

Status Monitoring . 310

GetStatus . 310

GetStatusString . 310

GetStatusFilename . 311

Cleanup . 313

DeleteADQControlUnit . 313

EEPROM . 314

WriteEeprom . 314

ReadEeprom . 315

ADQ3 Series Digitizers — User Guide spdevices.com Page 288 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Miscellaneous . 316

SWTrig . 316

Blink . 316

EjectTransferBuffer . 316

Development Kit . 318

ReadUserRegister . 318

WriteUserRegister . 318

ADQ3 Series Digitizers — User Guide spdevices.com Page 289 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.1 General

ADQAPI_ValidateVersion . 290

int ADQAPI_ValidateVersion(
int major,
int minor

)

Validate the version used by the user application and the API.

Return value

This function returns 0 if the API version is compatible, −1 if it is incompatible and −2 if it is backwards
compatible.

Description

This function provides a safe-guarding mechanism against dynamically linking a precompiled version of

the user application against an incompatible API. The protection works by adding a call to this function

with the static arguments ADQAPI_VERSION_MAJOR and ADQAPI_VERSION_MINOR:

int result = ADQAPI_ValidateVersion(ADQAPI_VERSION_MAJOR, ADQAPI_VERSION_MINOR);

This version number is defined as a constant in the ADQAPI.h header file. The result is a handshake

between the user application and the API evaluated at runtime—allowing the user to take appropriate

action, rather than to experience errors that are potentially hard to find.

Parameters

major (int)

The major version number. Should always be set to ADQAPI_VERSION_MAJOR.

minor (int)
The minor version number. Should always be set to ADQAPI_VERSION_MINOR.

ADQ3 Series Digitizers — User Guide spdevices.com Page 290 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.2 Identification

CreateADQControlUnit . 291

ADQControlUnit_EnableErrorTrace . 291

ADQControlUnit_ListDevices . 292

ADQControlUnit_SetupDevice . 292

void * CreateADQControlUnit()

Creates the ADQ control unit.

Return value

A pointer to the control unit object.

Description

This function creates an instance of the ADQ control unit, that may be used to find and setup ADQ

devices. This function should only be called once.

int ADQControlUnit_EnableErrorTrace(
void * adq_cu,
unsigned int trace_level,
const char * trace_file_dir

)

Enables message logging to file.

Return value

Returns 1 if the operation is successful, otherwise 0.

Description

Calling this function enables logging for the control unit and all connected devices.

Parameters

adq_cu (void *)

Pointer to the control unit instance, created by CreateADQControlUnit().

trace_level (unsigned int)

Selects the logging level. The following levels are supported:

• LOG_LEVEL_ERROR: Error
• LOG_LEVEL_WARN: Error and warning
• LOG_LEVEL_INFO: Error, warning and information

Setting bit 11 of this argument enables timestamps.

ADQ3 Series Digitizers — User Guide spdevices.com Page 291 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

trace_file_dir (const char *)

Either a path to a directory or a path to a file. If a file path is specified all log messages will be

appended to this file. If a directory path is specified the control unit messages will be logged to

<trace_file_dir>/spd_adqcontrolunit_trace.log

and a sperate file for each device will be created on the format

<trace_file_dir>/spd_device_<ADQ Type>_<Hardware Address>_trace.log

The current working directory can be specified as ”.”.

int ADQControlUnit_ListDevices(
void * adq_cu,
struct ADQInfoListEntry ** adq_info_list,
unsigned int * adq_info_list_length

)

List avilable devices

Return value

Returns 1 if the operation is successful, otherwise 0.

Description

This function lists available devices without setting up a communication channel.

Parameters

adq_cu (void *)

Pointer to the control unit instance, created by CreateADQControlUnit().

adq_info_list (struct ADQInfoListEntry **)

Pointer to a ADQInfoListEntry pointer. The API will allocate the memory and populate it with one
ADQInfoListEntry per device.

adq_info_list_length (unsigned int *)

The number of entries in adq_info_list.

int ADQControlUnit_SetupDevice(
void * adq_cu,
int adq_info_list_entry_number

)

Set up the device

Return value

Returns 1 if the operation is successful, otherwise 0.

ADQ3 Series Digitizers — User Guide spdevices.com Page 292 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Description

This function is called after ADQControlUnit_ListDevices() to set up the device, see Section 15.3.

Parameters

adq_cu (void *)

Pointer to the control unit instance, created by CreateADQControlUnit().

adq_info_list_entry_number (int)

The index of the device to set up, starting at 0.

ADQ3 Series Digitizers — User Guide spdevices.com Page 293 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.3 Parameter Interface

InitializeParameters . 294

InitializeParametersString . 295

InitializeParametersFilename . 296

GetParameters . 296

GetParametersString . 297

GetParametersFilename . 298

SetParameters . 299

SetParametersString . 299

SetParametersFilename . 300

ValidateParameters . 301

ValidateParametersString . 301

ValidateParametersFilename . 302

int InitializeParameters(
enum ADQParameterId id,
void *const parameters

)

Initialize a parameter set to its default values.

Return value

If the operation is successful, the return value is set to the size of the initialized parameter set. A negative

value indicates that an error has occurred. Refer to the trace log for more information about the cause

of the error.

See also

InitializeParametersString(), InitializeParametersFilename()

Description

This function initializes the memory region pointed to by parameters to hold the default values of the

parameter set id. Refer to the parameter definitions in Section A.3 for information on the default values
for each parameter set. Refer to Section 15.5 for a high-level description of the configuration interface.

Parameters

id (enum ADQParameterId)

The parameter set’s identification number. Targeting an unsupported parameter set will cause the

operation to fail with ADQ_EINVAL. Refer to the enumeration ADQParameterId in Section A.2 for

more information.

parameters (void *const)

A pointer to a memory region of sufficient size to accommodate the target parameter set. If this

parameter is NULL, the operation fails with ADQ_EINVAL.

ADQ3 Series Digitizers — User Guide spdevices.com Page 294 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

int InitializeParametersString(
enum ADQParameterId id,
char *const string,
size_t length,
int format

)

Initialize a parameter set to its default values and store the result encoded as JSON in a zero terminated

array of ASCII characters (C-string).

Return value

If the operation is successful, the return value is set to the number of characters (bytes) written to the

string buffer. This includes the zero terminator. A negative value indicates that an error has occurred.

Refer to the trace log for more information about the cause of the error.

See also

InitializeParameters(), InitializeParametersFilename()

Description

This function is similar to InitializeParameters(), except that the parameter set is encoded as JSON
and written to the string buffer pointed to by string. The length, i.e. capacity, of the string buffer needs
to be sufficiently large to receive the encoded parameter set. If the required length is larger than this

value, the operation fails with ADQ_EINVAL. If format is set to a nonzero value, formatted JSON will be

written to the string buffer. Refer to Section 15.5 for a high-level description of the configuration interface.

Parameters

id (enum ADQParameterId)

The parameter set’s identification number. Targeting an unsupported parameter set will cause the

operation to fail with ADQ_EINVAL. Refer to the enumeration ADQParameterId in Section A.2 for

more information.

string (char *const)

A pointer to a string buffer of sufficient size to accommodate the target parameter set. If this

parameter is NULL, the operation fails with ADQ_EINVAL.

length (size_t)

The length (capacity) of the string in bytes. This length includes the zero terminator. If the

required length is larger than this value, the function fails with ADQ_EINVAL.

format (int)
If this parameter is set to a nonzero value, formatted JSON will be written to the string buffer.

ADQ3 Series Digitizers — User Guide spdevices.com Page 295 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

int InitializeParametersFilename(
enum ADQParameterId id,
const char *const filename,
int format

)

Initialize a parameter set to its default values and store the result encoded as JSON in a target file.

Return value

If the operation is successful, the return value is set to the number of characters (bytes) written to the

file. A negative value indicates that an error has occurred. Refer to the trace log for more information

about the cause of the error.

See also

InitializeParameters(), InitializeParametersString()

Description

This function is similar to InitializeParametersString(), except that the parameter set is written to the
file filename instead of a string buffer. An existing file is overwritten by this operation. If the file cannot
be opened for writing or a low level I/O operation fails, ADQ_EEXTERNAL is returned. Refer to Section 15.5
for a high-level description of the configuration interface.

Parameters

id (enum ADQParameterId)

The parameter set’s identification number. Targeting an unsupported parameter set will cause the

operation to fail with ADQ_EINVAL. Refer to the enumeration ADQParameterId in Section A.2 for

more information.

filename (const char *const)
A pointer to a zero terminated array of ASCII characters (C-string) that holds the system path to

the target file. If this parameter is NULL, the operation fails with ADQ_EINVAL.

format (int)
If this parameter is set to a nonzero value, formatted JSON will be written to the target file.

int GetParameters(
enum ADQParameterId id,
void *const parameters

)

Read the current values of a parameter set from the digitizer.

Return value

If the operation is successful, the return value is set to the size of the retrieved parameter set. A negative

value indicates that an error has occurred. Refer to the trace log for more information about the cause

of the error.

ADQ3 Series Digitizers — User Guide spdevices.com Page 296 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

See also

GetParametersString(), GetParametersFilename()

Description

This function reads the current values of the parameter set id into the memory region pointed to by

parameters. Refer to Section 15.5 for a high-level description of the configuration interface.

Parameters

id (enum ADQParameterId)

The parameter set’s identification number. Targeting an unsupported parameter set will cause the

operation to fail with ADQ_EINVAL. Refer to the enumeration ADQParameterId in Section A.2 for

more information.

parameters (void *const)

A pointer to a memory region of sufficient size to accommodate the target parameter set. If this

parameter is NULL, the operation fails with ADQ_EINVAL.

int GetParametersString(
enum ADQParameterId id,
char *const string,
size_t length,
int format

)

Read the current values of a parameter set from the digitizer and store the result encoded as JSON in a

zero terminated array of ASCII characters (C-string).

Return value

If the operation is successful, the return value is set to the number of characters (bytes) written to the

string buffer. This includes the zero terminator. A negative value indicates that an error has occurred.

Refer to the trace log for more information about the cause of the error.

See also

GetParameters(), GetParametersFilename()

Description

This function is similar to GetParameters(), except that the parameter set is encoded as JSON and

written to the string buffer pointed to by string. The length, i.e. capacity, of the string buffer needs to
be sufficiently large to receive the encoded parameter set. If the required length is larger than this value,

the operation fails with ADQ_EINVAL. If format is set to a nonzero value, formatted JSON will be written

to the string buffer. Refer to Section 15.5 for a high-level description of the configuration interface.

ADQ3 Series Digitizers — User Guide spdevices.com Page 297 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Parameters

id (enum ADQParameterId)

The parameter set’s identification number. Targeting an unsupported parameter set will cause the

operation to fail with ADQ_EINVAL. Refer to the enumeration ADQParameterId in Section A.2 for

more information.

string (char *const)

A pointer to a string buffer of sufficient size to accommodate the target parameter set. If this

parameter is NULL, the operation fails with ADQ_EINVAL.

length (size_t)

The length (capacity) of the string in bytes. This length includes the zero terminator. If the

required length is larger than this value, the function fails with ADQ_EINVAL.

format (int)
If this parameter is set to a nonzero value, formatted JSON will be written to the string buffer.

int GetParametersFilename(
enum ADQParameterId id,
const char *const filename,
int format

)

Read the current values of a parameter set from the digitizer and store the result encoded as JSON in a

target file.

Return value

If the operation is successful, the return value is set to the number of characters (bytes) written to the

file. A negative value indicates that an error has occurred. Refer to the trace log for more information

about the cause of the error.

See also

GetParameters(), GetParametersString()

Description

This function is similar to GetParametersString(), except that the parameter set is written to the file

filename instead of a string buffer. An existing file is overwritten by this operation. If the file cannot be
opened for writing or a low level I/O operation fails, ADQ_EEXTERNAL is returned. Refer to Section 15.5 for
a high-level description of the configuration interface.

Parameters

id (enum ADQParameterId)

The parameter set’s identification number. Targeting an unsupported parameter set will cause the

operation to fail with ADQ_EINVAL. Refer to the enumeration ADQParameterId in Section A.2 for

more information.

ADQ3 Series Digitizers — User Guide spdevices.com Page 298 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

filename (const char *const)
A pointer to a zero terminated array of ASCII characters (C-string) that holds the system path to

the target file. If this parameter is NULL, the operation fails with ADQ_EINVAL.

format (int)
If this parameter is set to a nonzero value, formatted JSON will be written to the target file.

int SetParameters(
void *const parameters

)

Validate and write a parameter set to the digitizer.

Return value

If the operation is successful, the return value is set to the size of the written parameter set. A negative

value indicates that an error has occurred. Refer to the trace log for more information about the cause

of the error.

See also

SetParametersString(), SetParametersFilename()

Description

This function writes the parameter set pointed to by parameters to the digitizer. Refer to Section 15.5
for a high-level description of the configuration interface.

Parameters

parameters (void *const)

A pointer to a memory region holding the target parameter set. The identification number is read

from the parameter set itself. If this parameter is NULL, the operation fails with ADQ_EINVAL.

int SetParametersString(
const char *const string,
size_t length

)

Validate and write a parameter set to the digitizer where the parameters are read as JSON from a zero

terminated array of ASCII characters (C-string).

Return value

If the operation is successful, the return value is set to the number of characters (bytes) read from the

string buffer. A negative value indicates that an error has occurred. Refer to the trace log for more

information about the cause of the error.

See also

SetParameters(), SetParametersFilename()

ADQ3 Series Digitizers — User Guide spdevices.com Page 299 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Description

This function is similar to SetParameters(), except that the parameter set is read as JSON from the string

buffer pointed to by string. The parsing continues until a valid JSON object has been constructed, or

the maximum length has been exceeded. The latter case results in an error with ADQ_EINVAL as the

return value. On success, it is expected that the return value may be less than length, depending on

the contents of the string buffer. Refer to Section 15.5 for a high-level description of the configuration

interface.

Parameters

string (const char *const)

A pointer to a string buffer holding the target parameter set encoded as JSON. The identification

number is read from the parameter set itself. If this parameter is NULL, the operation fails with

ADQ_EINVAL.

length (size_t)

This value specifies the maximum number of characters that can be safely read from the string

buffer. Normally, this is the length of the string in bytes. The parsing expects a valid JSON object

to exist within the provided bounds.

int SetParametersFilename(
const char *const filename

)

Validate and write a parameter set to the digitizer where the parameters are read as JSON from a target

file.

Return value

If the operation is successful, the return value is set to the number of characters (bytes) read from the

file. A negative value indicates that an error has occurred. Refer to the trace log for more information

about the cause of the error.

See also

SetParameters(), SetParametersString()

Description

This function is similar to SetParametersString(), except that the parameter set is read from the file

filename instead from a string buffer. The file must contain a valid JSON object starting at the first

character. If the file does not exist or cannot be open for reading, the operation fails with ADQ_EEXTERNAL.
Refer to Section 15.5 for a high-level description of the configuration interface.

Parameters

filename (const char *const)
A pointer to a zero terminated array of ASCII characters (C-string) that holds the system path to

the target file. If this parameter is NULL, the operation fails with ADQ_EINVAL.

ADQ3 Series Digitizers — User Guide spdevices.com Page 300 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

int ValidateParameters(
const void *const parameters

)

Validate (but do not apply) a parameter set.

Return value

If the operation is successful, the return value is set to the size of the validated parameter set. A negative

value indicates that an error has occurred. Refer to the trace log for more information about the cause

of the error.

See also

ValidateParametersString(), ValidateParametersFilename()

Description

This function validates the input parameter set according to the same rules as SetParameters(). How-
ever, the parameters are not applied. Refer to Section 15.5 for a high-level description of the configuration

interface.

Parameters

parameters (const void *const)

A pointer to a memory region holding the target parameter set. The identification number is read

from the parameter set itself. If this parameter is NULL, the operation fails with ADQ_EINVAL.

int ValidateParametersString(
const void *const string,
size_t length

)

Validate (but do not apply) a parameter set read as JSON from a zero-terminated array of ASCII char-

acters (C-string).

Return value

If the operation is successful, the return value is set to the number of characters (bytes) read from the

string buffer. A negative value indicates that an error has occurred. Refer to the trace log for more

information about the cause of the error.

See also

ValidateParameters(), ValidateParametersFilename()

Description

This function is similar to ValidateParameters(), except that the parameter set is read as JSON from the

string buffer pointed to by string. The parsing continues until a valid JSON object has been constructed,

or the maximum length has been exceeded. The latter case results in an error with ADQ_EINVAL as the
return value. On success, it is expected that the return value may be less than length, depending on

ADQ3 Series Digitizers — User Guide spdevices.com Page 301 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

the contents of the string buffer. Refer to Section 15.5 for a high-level description of the configuration

interface.

Parameters

string (const void *const)

A pointer to a string buffer holding the target parameter set encoded as JSON. The identification

number is read from the parameter set itself. If this parameter is NULL, the operation fails with

ADQ_EINVAL.

length (size_t)

This value specifies the maximum number of characters that can be safely read from the string

buffer. Normally, this is the length of the string in bytes. The parsing expects a valid JSON object

to exist within the provided bounds.

int ValidateParametersFilename(
const char *const filename

)

Validate (but do not apply) a parameter set read as JSON from a target file.

Return value

If the operation is successful, the return value is set to the number of characters (bytes) read from the

file. A negative value indicates that an error has occurred. Refer to the trace log for more information

about the cause of the error.

See also

ValidateParameters(), ValidateParametersString()

Description

This function is similar to ValidateParameters(), except that a JSON encoded parameter set is read

from the file filename. The file must contain a valid JSON object starting at the first character. If the

file does not exist or cannot be open for reading, the operation fails with ADQ_EEXTERNAL. Refer to Sec-
tion 15.5 for a high-level description of the configuration interface.

Parameters

filename (const char *const)
A pointer to a zero terminated array of ASCII characters (C-string) that holds the system path to

the target file. If this parameter is NULL, the operation fails with ADQ_EINVAL.

ADQ3 Series Digitizers — User Guide spdevices.com Page 302 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.4 Data Acquisition

StartDataAcquisition . 303

StopDataAcquisition . 303

int StartDataAcquisition(void)

Start the data acquisition, data transfer and data readout processes.

Return value

If the operation is successful, ADQ_EOK is returned. A negative value indicates that an error has occurred.
Refer to the trace log for more information about the cause of the error.

Description

This function behaves differently depending on the digitizer’s configuration at the time of the call:

Data readout

If the configuration fulfills the critera in Section 10.5 this function will start the data acquisition,

data transfer and data readout processes—effectively arming the digitizer. If the operation is

successful, the digitizer will be under the control of the API and the user must not call any API

functions other than those marked “� Thread-safe”. Calling StopDataAcquisition() stops the
acquisition and transfer of data and returns control to the user.

� Important

Once the data acquisition process has started, the user must not call any API fuctions other

than those marked “� Thread-safe”.

Data transfer

If the configuration fulfills the criteria in Section 10.4 this function will start the data acquisition and

data transfer processes—effectively arming the digitizer. Calling StopDataAcquisition() stops
the acquisition and the transfer of data.

If the trigger blocking function is active for any channel (Section 9.5), that mechanism is armed together

with the data acquisition process.

int StopDataAcquisition(void) � Thread-safe

Stop the data acquisition, data transfer and data readout processes.

Return value

If the operation is successful, ADQ_EOK is returned. Additionally, ADQ_EINTERRUPTED may be an expected
return value if an acquisition is stopped prematurely. Other negative values indicate that an error has

occurred. Refer to the trace log for more information about the cause of the error.

ADQ3 Series Digitizers — User Guide spdevices.com Page 303 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Description

Calling this function stops the data acquisition, data transfer and data readout processes in a well-defined

manner. If the data readout process was running (Section 10.5), this function marks the point where

control of the digitizer is returned to the user. This functionmust be called before disconnecting from the

digitizer if an acquisition is running.

� Important

This function frees the record buffer memory.

ADQ3 Series Digitizers — User Guide spdevices.com Page 304 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.5 Data Transfer

WaitForP2pBuffers . 305

UnlockP2pBuffers . 305

int WaitForP2pBuffers(
struct ADQP2pStatus * status,
int timeout

)

Wait for data from the data transfer process.

Return value

If the operation is successful, ADQ_EOK is returned. The return value ADQ_EAGAIN indicates that the op-
eration timed out. Other negative values indicate that an error has occurred. Refer to the trace log for

more information about the cause of the error.

Description

Wait for new data to become available by observing the transfer buffer markers for all active channels.

This function returns as soon as at least one transfer buffer is filled, or timeout is reached. This function
is only used with the data transfer interface (Section 10.4) and when marker_mode is set to ADQ_MARKER_
MODE_HOST_MANUAL. Refer to Section 10.4.2 for a program flowchart.

Parameters

status (struct ADQP2pStatus *)

The status parameter is a pointer to an ADQP2pStatus struct whose value communicates status
information about the data transfer transfer process. If the function returns ADQ_EOK, information
on which transfer buffers are available for reading is found in in this struct. If this parameter is

NULL, the operation fails with ADQ_EINVAL.

timeout (int)
This parameter determines the behavior when a transfer buffer is not immediately available:

• Any positive value (> 0) waits timeout milliseconds.
• The value 0 causes the function to return immediately.

A negative value will cause the operation to fail with ADQ_EINVAL.

int UnlockP2pBuffers(
int channel,
uint64_t mask

)

Unlock one or several transfer buffers for the target channel.

ADQ3 Series Digitizers — User Guide spdevices.com Page 305 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Return value

If the operation is successful, ADQ_EOK is returned. A negative value indicates that an error has occurred.
Refer to the trace log for more information about the cause of the error.

Description

Calling this function will unlock one or several transfer buffers for the target channel. Once a transfer

buffer is unlocked, its contents can be overwritten by the digitizer at any time. This function is only used

with the data transfer interface (Section 10.4) and when write_lock_enabled is set to 1.

Parameters

channel (int)
Index of the target channel.

mask (uint64_t)

A mask of buffer indexes to unlock. Each bit position in the mask corresponds to a buffer index.

For example, set the mask to 0x30 to unlock buffer 4 and 5.

ADQ3 Series Digitizers — User Guide spdevices.com Page 306 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.6 Data Readout

WaitForRecordBuffer . 307

ReturnRecordBuffer . 309

int64_t WaitForRecordBuffer(� Thread-safe

int * channel,
void ** buffer,
int timeout,
struct ADQDataReadoutStatus * status

)

Wait for data from the target channel.

Return value

If the operation is successful, the return value depends on the parameter nof_record_buffers_in_
array. The return value holds either

1. the size of the record buffer’s data payload in bytes, if the parameter is set to zero; or

2. the number of record buffers in the returned array, if the parameter is set to a nonzero value.

� Note

Case 1 defines the default behavior. Case 2 is tied to an advanced use case, see Section 10.5.8 for

more information.

If the return value is zero, this indicates a successful operation, but that only the status parameter can
be read (see Section 10.5.4).

The return value ADQ_EAGAIN indicates that the operation timed out. Other negative values indicate
that an error has occurred. Refer to the trace log for more information about the cause of the error.

Description

� Note

This function is used with the data readout interface (Section 10.5).

WaitForRecordBuffer() allows access to the read port of a channel. Through this port, a channel can
pass record buffers, status information or both.

It is important to note that writing data to a record buffer is not triggered by a call to this function.

Instead, this happens continuously in the background and is managed by the internal thread (Fig. 42).

The function notifies the user of the location of a completed record buffer by passing a reference via

the parameter buffer. This action does not transfer ownership of the memory. The memory of the

underlying record buffer is owned by the API.

Though the memory is owned by the API, once a reference to a record buffer is passed to the user

application, the API will not attempt to access the underlying memory for any reason. To make the mem-

ADQ3 Series Digitizers — User Guide spdevices.com Page 307 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

ory available to the API once again, the user has to call ReturnRecordBuffer(). These two functions

work in tandem to achieve an efficient memory utilization suitable to transfer data indefinitely.

Parameters

channel (int *)
The channel parameter is a pointer to an int whose value specifies for which channel to wait for
a record buffer. The indexing is zero based, i.e. the value 0 corresponds to the first channel.

The channel index is passed by pointer and by value to handle the special value ADQ_ANY_
CHANNEL. In this case, the operation will return as soon as a record buffer can be read from any of

the active channels (or an error occurs). If the operation is successful, the API will set the value

pointed to by channel to the channel that responded. If this parameter is NULL, the operation fails
with ADQ_EINVAL.

buffer (void **)
The buffer parameter is a pointer to a void* whose value indicates where the record buffer is

located. In other words, this parameter outputs an address to a memory region where data is

available for reading. If this parameter is NULL, the operation fails with ADQ_EINVAL.
When this interface is used by an ADQ3 series digitizer, the buffer points to an ADQGen4Record

struct if the parameter nof_record_buffers_in_array is set to zero (the default). Otherwise,

the buffer points to an ADQGen4RecordArray which holds one or several record buffers. See Sec-
tion 10.5.8 for more information.

/* Declare a pointer to receive the location of a record buffer. */
struct ADQGen4Record *record = NULL;

/* Request data from the first channel with a timeout of 1000 milliseconds. */
int64_t result = WaitForRecordBuffer(0, &record, 1000, NULL);

timeout (int)
This parameter determines the behavior when a record buffer is not immediately available:

• Any positive value (> 0) waits timeout milliseconds.
• The value 0 causes the function to return immediately.

• The value −1 causes the function to wait indefinitely.

status (struct ADQDataReadoutStatus *)

The status parameter is a pointer to an ADQDataReadoutStatus struct whose value communi-

cates status information about the record buffer and the health of the transfer process for the

target channel. The value NULL is allowed and prevents the propagation of status information.

See Section 10.5.4 for more information.

ADQ3 Series Digitizers — User Guide spdevices.com Page 308 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

int ReturnRecordBuffer(� Thread-safe

int channel,
void * buffer

)

Return memory to be used by the data readout process.

Return value

If the operation is successful, ADQ_EOK is returned. A negative value indicates that an error has occurred.
Refer to the trace log for more information about the cause of the error.

Description

� Note

This function is used with the data readout interface (Section 10.5).

ReturnRecordBuffer() allows access to the write port of a channel. Through this port, the user passes
references to memory regions to be used to store the data associated with a record.

Parameters

channel (int)
The channel parameter specifies to which channel the record buffer is returned. The special value
ADQ_ANY_CHANNEL is a wildcard value to task theAPI with finding the record buffer’s corresponding
channel. However, this operation requires an internal table-based lookup so it is always more

efficient to specify the channel explicitly. The indexing is zero based, i.e. the value 0 corresponds

to the first channel.

buffer (void *)
The buffer parameter is a pointer to a memory region that should be used to receive a new record

buffer. Once the memory is handed over to the API, modification of its contents may happen at

any time. If buffer is NULL, the operation fails with ADQ_EINVAL.
When this interface is used by an ADQ3 series digitizer, the buffer points to an ADQGen4Record

struct if the parameter nof_record_buffers_in_array is set to zero (the default). Otherwise,

the buffer points to an ADQGen4RecordArray which holds one or several record buffers. See Sec-
tion 10.5.8 for more information.

Since the API owns the memory used in the data readout process (see Section 10.5.2), the

value of buffer is expected to exactly match the values passed to the user application via Wait-
ForRecordBuffer().

ADQ3 Series Digitizers — User Guide spdevices.com Page 309 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.7 Status Monitoring

GetStatus . 310

GetStatusString . 310

GetStatusFilename . 311

int GetStatus(� Thread-safe

enum ADQStatusId id,
void *const status

)

Read the current status of digitizer.

Return value

If the operation is successful, the return value is set to the size of the retrieved status set. A negative

value indicates that an error has occurred. Refer to the trace log for more information about the cause

of the error.

See also

GetStatusString(), GetStatusFilename()

Description

This function reads the current values of the status set id into the memory region pointed to by status.

Parameters

id (enum ADQStatusId)

The status set’s identification number. Targeting an unsupported status set will cause the op-

eration to fail with ADQ_EINVAL. Refer to the enumeration ADQStatusId in Section A.2 for more

information.

status (void *const)
A pointer to a memory region of sufficient size to accommodate the target status set. If this pa-

rameter is NULL, the operation fails with ADQ_EINVAL.

int GetStatusString(� Thread-safe

enum ADQStatusId id,
char *const string,
size_t length,
int format

)

Read the current status of the digitizer and store the result encoded as JSON in a zero terminated array

of ASCII characters (C-string).

Return value

If the operation is successful, the return value is set to the number of characters (bytes) written to the

ADQ3 Series Digitizers — User Guide spdevices.com Page 310 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

string buffer. This includes the zero terminator. A negative value indicates that an error has occurred.

Refer to the trace log for more information about the cause of the error.

See also

GetStatus(), GetStatusFilename()

Description

This function is similar to GetStatus(), except that the parameter set is encoded as JSON and written

to the string buffer pointed to by string. The length, i.e. capacity, of the string buffer needs to be

sufficiently large to receive the encoded parameter set. If the required length is larger than this value,

the operation fails with ADQ_EINVAL. If format is set to a nonzero value, formatted JSON will be written

to the string buffer.

Parameters

id (enum ADQStatusId)

The status set’s identification number. Targeting an unsupported status set will cause the op-

eration to fail with ADQ_EINVAL. Refer to the enumeration ADQStatusId in Section A.2 for more

information.

string (char *const)

A pointer to a string buffer of sufficient size to accommodate the target parameter set. If this

parameter is NULL, the operation fails with ADQ_EINVAL.

length (size_t)

The length (capacity) of the string in bytes. This length includes the zero terminator. If the

required length is larger than this value, the function fails with ADQ_EINVAL.

format (int)
If this parameter is set to a nonzero value, formatted JSON will be written to the string buffer.

int GetStatusFilename(� Thread-safe

enum ADQStatusId id,
const char *const filename,
int format

)

Read the current status of the digitizer and store the result encoded as JSON in a target file.

Return value

If the operation is successful, the return value is set to the number of characters (bytes) written to the

string buffer. A negative value indicates that an error has occurred. Refer to the trace log for more

information about the cause of the error.

See also

GetStatus(), GetStatusString()

ADQ3 Series Digitizers — User Guide spdevices.com Page 311 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Description

This function is similar to GetStatusString(), except that the parameter set is written to the file filename
instead of a string buffer. An existing file is overwritten by this operation. If the file cannot be opened for

writing or a low level I/O operation fails, ADQ_EEXTERNAL is returned.

Parameters

id (enum ADQStatusId)

The status set’s identification number. Targeting an unsupported status set will cause the op-

eration to fail with ADQ_EINVAL. Refer to the enumeration ADQStatusId in Section A.2 for more

information.

filename (const char *const)
A pointer to a zero terminated array of ASCII characters (C-string) that holds the system path to

the target file. If this parameter is NULL, the operation fails with ADQ_EINVAL.

format (int)
If this parameter is set to a nonzero value, formatted JSON will be written to the target file.

ADQ3 Series Digitizers — User Guide spdevices.com Page 312 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.8 Cleanup

DeleteADQControlUnit . 313

void DeleteADQControlUnit(
void * adq_cu

)

Deletes the control unit.

Description

This function deletes the control unit, the devices and all other resources allocated by the API.

Parameters

adq_cu (void *)

Pointer to the control unit object.

ADQ3 Series Digitizers — User Guide spdevices.com Page 313 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.9 EEPROM

WriteEeprom . 314

ReadEeprom . 315

int WriteEeprom(
enum ADQEeprom eeprom,
uint32_t address,
const void *const buffer,
size_t length

)

Write data to the digitizer’s EEPROM.

Return value

If the operation is successful, the return value is set to the number of bytes written to the digitizer’s EEP-

ROM. A negative value indicates that an error has occurred. Refer to the trace log for more information

about the cause of the error.

Description

This function reads length bytes from the buffer and writes the data to the target EEPROM, starting at
the target address. The user is only allowed to target the area ADQ_EEPROM_USER. Refer to Section 14
for more information.

Parameters

eeprom (enum ADQEeprom)

The target EEPROM area as a value from the enumeration ADQEeprom. Only the area ADQ_
EEPROM_USER is available to the user. Writing to any other area will cause the function to fail

with ADQ_EUNSUPPORTED as the return value.

address (uint32_t)

The target address within the EEPROM area. The data in the buffer will be placed starting at

this point.

buffer (const void *const)
A pointer to a memory region of (at least) size length containing the data to be written to the

EEPROM.

length (size_t)

The number of bytes to read from buffer and write to the EEPROM. It is implied that the memory
region pointed to by buffer is at least this size.

ADQ3 Series Digitizers — User Guide spdevices.com Page 314 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

int ReadEeprom(
enum ADQEeprom eeprom,
uint32_t address,
void *const buffer,
size_t length

)

Read data from the digitizer’s EEPROM.

Return value

If the operation is successful, the return value is set to the number of bytes read from the digitizer’s EEP-

ROM. A negative value indicates that an error has occurred. Refer to the trace log for more information

about the cause of the error.

Description

This function reads length bytes from the target EEPROM starting at the target address and writes the
retrieved data to the buffer. Refer to Section 14 for more information.

Parameters

eeprom (enum ADQEeprom)

The target EEPROM area as a value from the enumeration ADQEeprom.

address (uint32_t)

The target address within the EEPROM area.

buffer (void *const)
A pointer to a memory region of (at least) size length to hold the data read from the EEPROM.

length (size_t)

The number of bytes to read from the EEPROM. It is implied that the memory region pointed to

by buffer is at least this size.

ADQ3 Series Digitizers — User Guide spdevices.com Page 315 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.10 Miscellaneous

SWTrig . 316

Blink . 316

EjectTransferBuffer . 316

int SWTrig() � Thread-safe

Issue a software event.

Return value

If the operation is successful, ADQ_EOK is returned. A negative value indicates that an error has occurred.
Refer to the trace log for more information about the cause of the error.

Description

This function issues an event from the software controlled event source. Refer to Section 6.2 for addi-

tional details.

int Blink()

Blink with the status LED.

Return value

If the operation is successful, ADQ_EOK is returned. A negative value indicates that an error has occurred.
Refer to the trace log for more information about the cause of the error.

Description

This function blocks for five seconds while the status LED blinks blue with a 1 Hz on/off pattern.

int EjectTransferBuffer(� Thread-safe

int channel
)

Eject the transfer buffer(s).

Return value

If the operation is successful, ADQ_EOK is returned. A negative value indicates that an error has occurred.
Refer to the trace log for more information about the cause of the error.

Description

This function ejects the active transfer buffer for the specified channel making it available to the user

immediately. The timing of the function call relative to data or external input is not guaranteed. This

function is only intended to be used in specific cases, generally to eject the last buffer of an acquisition.

Otherwise, use

ADQ3 Series Digitizers — User Guide spdevices.com Page 316 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

• eject_buffer_source when the real-time relationship between the eject event and external inputs
is important; or

• eject_buffer_timeout when transfer buffers should be ejected periodically.

Refer to Section 10.7 for more information.

� Note

EjectTransferBuffer()will only eject partially filled buffers. Empty transfer buffers will not be ejected.

Parameters

channel (int)
The channel for which to eject any partially filled transfer buffer. The special value ADQ_ANY_
CHANNEL is allowed and targets any channel with partially filled transfer buffers.

ADQ3 Series Digitizers — User Guide spdevices.com Page 317 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.4.11 Development Kit

ReadUserRegister . 318

WriteUserRegister . 318

int ReadUserRegister(� Thread-safe

int ul_target,
uint32_t regnum,
uint32_t * retval

)

Read from the register space of a user logic area.

Return value

If the operation is successful, ADQ_EOK is returned. A negative value indicates that an error has occurred.
Refer to the trace log for more information about the cause of the error.

Description

This function reads from the register space of one of the available user logic areas in the digitizer firmware.

The function of a given register address is user defined through the development kit. For more informa-

tion, refer to the development kit user guide. [8]

Parameters

ul_target (int)

The target user logic area. This value should be set to one of the alternatives in ADQUserLogic.

regnum (uint32_t)

The register address. Each increment corresponds to a 32-bit register index.

retval (uint32_t *)

A pointer to a memory region where the 32-bit read value will be stored.

int WriteUserRegister(� Thread-safe

int ul_target,
uint32_t regnum,
uint32_t mask,
uint32_t data,
uint32_t * retval

)

Write to the register space of a user logic area.

Return value

If the operation is successful, ADQ_EOK is returned. A negative value indicates that an error has occurred.
Refer to the trace log for more information about the cause of the error.

ADQ3 Series Digitizers — User Guide spdevices.com Page 318 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Description

This function writes to the register space of one of the available user logic areas in the digitizer firmware.

The function of a given register address is user defined through the development kit. For more informa-

tion, refer to the development kit user guide. [8]

Parameters

ul_target (int)

The target user logic area. This value should be set to one of the alternatives in ADQUserLogic.

regnum (uint32_t)

The register address. Each increment corresponds to a 32-bit register index.

mask (uint32_t)

A negative bit mask. Only the bits that are set to zero in this mask will be affected by the register

write.

data (uint32_t)

The register write value.

retval (uint32_t *)

If a valid pointer to a memory region is provided via this parameter, the register will automatically

be read after the write is completed, and the read data will be returned via this pointer. If this is

not desired, a NULL pointer can be provided to prevent the readback.

ADQ3 Series Digitizers — User Guide spdevices.com Page 319 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

A.5 Error Codes

ADQ_EOK . 320

ADQ_EINVAL . 320

ADQ_EAGAIN . 320

ADQ_EOVERFLOW . 320

ADQ_ENOTREADY . 320

ADQ_EINTERRUPTED . 321

ADQ_EIO . 321

ADQ_EEXTERNAL . 321

ADQ_EUNSUPPORTED . 321

ADQ_EINTERNAL . 321

#define ADQ_EOK (0)

Description

Signals the absence of any errors. The operation was successful.

#define ADQ_EINVAL (-1)

Description

The operation failed due to an invalid input value.

#define ADQ_EAGAIN (-2)

Description

The resource is temporarily unavailable. This is often used to indicate a timeout.

#define ADQ_EOVERFLOW (-3)

Description

The operation failed due to an overflow condition.

#define ADQ_ENOTREADY (-4)

Description

The resource is not yet ready.

ADQ3 Series Digitizers — User Guide spdevices.com Page 320 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

#define ADQ_EINTERRUPTED (-5)

Description

The operation was interrupted.

#define ADQ_EIO (-6)

Description

The operation failed due to an input/output error.

#define ADQ_EEXTERNAL (-7)

Description

The operation failed due to an external error, e.g. from OS-level operations.

#define ADQ_EUNSUPPORTED (-8)

Description

The operation is unsupported.

#define ADQ_EINTERNAL (-9)

Description

The operation failed due to an internal error. This situation cannot be resolved by the user.

ADQ3 Series Digitizers — User Guide spdevices.com Page 321 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

B PCIe 16-Lane Mode

� Note

This section only applies to ADQ35-PCIe.

To increase the bandwidth of the device-to-host PCIe interface, ADQ35-PCIe can operate in a 16-lane

mode provided that the host computer’s motherboard has x8x8 support. In this mode, a digitizer con-

nected to a 16-lane PCIe slot will be detected by the host system as two separate PCIe devices with

8 lanes each. The detection is automatic but may require that x8x8 support is enabled in the mother-

board BIOS. If disabled (or unsupported) the digitizer will fall back to operate in 8-lane mode. Please

refer to the motherboard manual and its specification for details on x8x8 support.

� Note

The x8x8 mode may also be referred to as PCIe bifurcation by some motherboard manufacturers.

It is typically supported on industrial, server and workstation motherboards. Most consumer grade

motherboards do not support this feature.

B.1 Configuration

The following requirements must be met for the digitizer to operate in the 16-lane mode:

• The digitizer must support the 16-lane mode (only ADQ35-PCIe).

• Forced 8-lane mode must be disabled, see Appendix B.2 for details.

• x8x8 is supported by the motherboard, and enabled in BIOS for the slot where the digitizer is

installed.

• The virtual address feature IOMMU (AMD) or VT-d (Intel) is disabled in BIOS.

� Note

Support for x8x8 may be tied to specific PCIe slots on the motherboard.

Successful configuration may be verified by querying the appropriate host system facilities to see if

the two PCIe devices labeled ADQ35 (PID 0x0035) and ADQ PCIe Extension (PID 0x5000) have been

detected. On Windows, this information is available in the Device Manager. On Linux, refer to the

output from lspci. Additionally, properties such as the link_width and link_generation of the

communication_interface is included in the digitizer’s constant parameter set and also presented

in its trace log file (see Section 15.3).

� Important

Some motherboards, where x8x8 support is disabled in BIOS, will prevent the automatic fallback to

8-lane mode from functioning correctly. For these motherboards, support for x8x8 must be enabled.

This issue manifests as the only device detected by the host system is the one labeled ADQ PCIe
Extension. However, if no such BIOS option exists, the digitizer’s PCIe interface can be forced into

8-lane mode. See Appendix B.2 for details.

ADQ3 Series Digitizers — User Guide spdevices.com Page 322 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

B.2 Forced 8-Lane Mode

� Release 2025.1.1

Forced 8-lane mode is enabled by default on new units shipped with firmware 2025.1.1 or later.

� Release 2024.2

Forced 8-lane mode requires digitizer firmware and system manager firmware from release 2024.2 or

later.

The digitizer’s PCIe interface can be forced into 8-lane mode to support motherboards that prevent the

otherwise automatic fallback from working correctly. Whether or not to force 8-lane mode is decided by

a parameter stored in nonvolatile memory and changes to this state take effect the next time the digitizer

is power cycled. Note that both the digitizer firmware and the system manager firmware need to be from

release 2024.2 or later. If neither of these prerequisites are fulfilled, the PCIe interface will remain in

automatic mode.

Enabling or disabling the forced 8-lane mode is carried out using the ADQUpdater software tool and

the command --set-pcie-forced-8lane-mode. The command takes an argument that should be set

to 1 to enable and 0 to disable:

Enable

> adqupdater -d1 --set-pcie-forced-8lane-mode=1

Disable

> adqupdater -d1 --set-pcie-forced-8lane-mode=0

Current State

Information about the current state is included in the output from the --list-boot-status command:

> adqupdater -d1 --list-boot-status
...
INFO: PCIe forced 8-lane mode is enabled.
...

ADQ3 Series Digitizers — User Guide spdevices.com Page 323 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

C Hugepages

Hugepages is a memory management technique on Linux intended to lower the memory management

overhead for the operating system. In the digitizer context, these hugepages can be used as particulary

large transfer buffers (Section 10.1) since they fulfill the strict requirements of being contiguous and that

their physical address remains fixed. However, the latter property is an (unintentional) effect of how

hugepages are implemented in the Linux kernel and may change in future kernel versions.

� Important

In practice, using hugepages as transfer buffes hinges on an unintentional implementation detail in

the Linux kernel. While the required property has held since its inception, a change may occur without

notice in a future kernel version. Additionally, this feature should be considered experimental from a

digitizer perspective and may not be supported on all systems.

C.1 Host Configuration

By default, hugepages are disabled on most Linux distributions and require user intervention to activate.

The hugepage mechanism works by reserving RAM when the system boots up and thus reduces the

amount of memory available for other purposes. Precisely how to enable hugepages may differ between

Linux distributions. The following example demonstrates how to persistently add two 1 GB hugepages

on Ubuntu.

1. Edit /etc/default/grub and append the following to the end of the file:

GRUB_CMDLINE_LINUX_DEFAULT=”${GRUB_CMDLINE_LINUX_DEFAULT} hugepagesz=1G
hugepages=2”

2. Save the file and run:

sudo update-grub

3. Restart the system.

In addition to enabling the hugepages, the virtual address feature IOMMU (AMD) or VT-d (Intel) must be

disabled. Normally, this can be achieved via a kernel parameter or in the system BIOS.

� Note

Please refer to the documentation for the target Linux distribution for information on how to configure

hugepages.

C.2 Mapping and Unmapping

A hugepage may either be mapped (allocated)

1. by the user via the kernel functions directly, followed by looking up the bus_address of the

hugepage by using the digitizer’s API and the action ADQ_BUFFER_ACTION_HUGEPAGE_LOOKUP; or

ADQ3 Series Digitizers — User Guide spdevices.com Page 324 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

2. using the digitizer’s API and the action ADQ_BUFFER_ACTION_HUGEPAGE_MMAP, see Section C.3 for
an example.

The hugepage may then be partitioned as needed to provide transfer buffers (Section 10.1) for the data

transfer process. This is carried out by using the mechanism for user-allocated transfer buffers (Sec-

tion 10.1.1) and, for each active buffer, assigning an appropriate virtual address and its correspond-

ing bus address to record_buffer and record_buffer_bus_address, respectively. Metadata transfer
buffers may be directed to hugepage memory in a similar way. From the programmer’s perspective, al-

locating hugepages is a separate, independent step, carried out before the digitizer’s configuration step

(Section 15.5) is handled in the user application.

Since hugepages are owned and managed by the operating system, their state persists across

restarts of the user application. Thus, the user must be take care to unmap (free) any active hugepages

in the cleanup phase (Section 15.7). Failing to do so will “lock” the hugepage and remove it from the

pool of available memory. In this situation, the only way to restore its unmapped state is to restart the

host system. One important implication of this requirement is that unexpected crashes of the user ap-

plication may result in the cleanup phase not being triggered, ultimately resulting in hugepages that are

not available for reuse until the system is restarted.

1. Unmapping a hugepage must be done manually via the kernel functions if that method was used

in the mapping step.

2. Unmapping a hugepage mapped with the action ADQ_BUFFER_ACTION_HUGEPAGE_MMAP can be

done either

• automatically, by relying on the call to DeleteADQControlUnit() to unmap all active

hugepages; or

• manually, using the buffer object from the mapping step and changing the action to ADQ_
BUFFER_ACTION_HUGEPAGE_MUNMAP.

The former method is likely good enough for most practical situations, but the latter offers more

granular control if the user should want it.

� Important

The state of a hugepage (mapped/unmapped) persists across application restarts. The user must take

care to unmap any active hugepages before the user application exits. Failing to do so will result in a

locked hugepage that becomes unavailable for reuse. One common cause for this is an application

crash where the cleanup phase is not triggered properly. The only way to remedy this situation is to

restart the host computer.

C.3 Example

The following code example demonstrates the case where a single 1 GB hugepage is partitioned and

mapped as record data transfer buffers for all active channels. This partitioning is visualized Fig. 47.

ADQ3 Series Digitizers — User Guide spdevices.com Page 325 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

/* Let the API allocate a single 1 GB hugepage. */
struct ADQBufferAddress buffer_address = {0};
buffer_address.size = 1ul * 1024 * 1024 * 1024;
buffer_address.action = ADQ_BUFFER_ACTION_HUGEPAGE_MMAP;

int result = ADQ_GetParameters(adq_cu, adq_num, ADQ_PARAMETER_ID_BUFFER_ADDRESS,
&buffer_address);

if (result != sizeof(buffer_address))
{
/* Handle error */

}

/* Partition the hugepage into record data transfer buffers for all channels. */
uint64_t offset = 0;
for (int ch = 0; ch < adq.constant.nof_channels; ++ch)
{
for (int i = 0; i < adq.transfer.channel[ch].nof_buffers; ++i)
{
adq.transfer.channel[ch].record_buffer_bus_address[i] =
buffer_address.bus_address + offset;

adq.transfer.channel[ch].record_buffer[i] =
(uint8_t *)buffer_address.virtual_address + offset;

adq.transfer.channel[ch].record_buffer_size = record_buffer_size;

offset += record_buffer_size;
}

}

/* Perform other configuration and acquisition as usual... */
adq.transfer.common.record_buffer_memory_owner = ADQ_MEMORY_OWNER_USER;

/* The hugepage may be unmapped (freed) by switching the action. Hugepages are
also unmapped as part of the general cleanup function DeleteADQControlUnit,
meaning that manual unmapping is technically not required. */

buffer_address.action = ADQ_BUFFER_ACTION_HUGEPAGE_MUNMAP;
result = ADQ_SetParameters(adq_cu, adq_num, &buffer_address);
if (result != sizeof(buffer_address))
{
/* Handle error */

}

/* Perform other cleanup. */

ADQ3 Series Digitizers — User Guide spdevices.com Page 326 of 327

https://www.spdevices.com

Classification Revision

Public 2025.1.1

Document ID Date

21-2539 2025-04-16

Channel 0
Transfer buffer 0

Hugepage
bus_addressvirtual_address

record_buffer_size

Used by the user application Used by the digitizer

Channel 0
Transfer buffer 1

Channel 0
Transfer buffer N-1

Channel 1
Transfer buffer 0

Channel 1
Transfer buffer 1

Channel 1
Transfer buffer N-1

Figure 47: Partitioning of a hugepage into record data transfer buffers for two channels with N buffers

each. This particular layout is not the only valid one, the transfer buffers may be spread out in the

hugepage as needed.

ADQ3 Series Digitizers — User Guide spdevices.com Page 327 of 327

https://www.spdevices.com

Worldwide Sales and Technical Support

spdevices.com

Teledyne SP Devices Corporate Headquarters

Teknikringen 8D

SE-583 30 Linköping

Sweden

Phone: +46 (0)13 645 0600

Fax: +46 (0)13 991 3044

Email: spd_info@teledyne.com

Copyright © 2025 Teledyne Signal Processing Devices Sweden AB

All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.

https://spdevices.com
mailto:spd_info@teledyne.com

	Introduction
	Overview
	How to Read This Document
	Firmware Types
	Standard Data Acquisition Firmware (FWDAQ)
	Advanced Time-Domain Firmware (FWATD)
	Pulse Detection Firmware (FWPD)

	The First Acquisition
	Definitions and Abbreviations

	Analog Front-End
	Input Range
	Variable DC Offset

	ADC
	Clock System
	Sampling Clock Generation
	Reference Clock

	Signal Processing
	Digital Gain and Offset
	Sample Skip
	Digital Baseline Stabilization (DBS)
	Typical Setup Routine
	Advanced Usage

	FIR Filter
	Filter Design Example

	PDRX
	Hardware and Firmware License
	Channel Combination

	ATD
	FWATD Firmware and License
	Accumulator
	Threshold Filter
	Limitations
	Accumulation Grid Synchronization
	Overflow

	PD
	FWPD Firmware and License
	Pulse Analysis
	Data Format
	Limitations
	Peak Value and Position
	Full Width at Half Maximum (FWHM)
	Area
	Examples

	Event Sources
	Trigger Events
	Software
	Periodic
	Synchronization

	Signal Level
	Signal Level Matrix
	Port TRIG
	Port SYNC
	Port GPIOx
	Port PXIe
	Matrix
	Reference Clock Synchronization

	Functions
	Pattern Generator
	Operation
	Count
	Source
	Reset Source
	Output Value
	Examples

	Pulse Generator
	Timestamp Synchronization
	Daisy Chain
	Structure
	Phase One: Synchronizing the Timing Grid
	Phase Two: Continuous Operation
	Example: ADQ32-PCIe
	Example: ADQ36-PXIe
	Limitations
	Configuration
	Runtime Error Reporting

	Fractional-N PLL

	Ports
	Connector Map
	ADQ30-PCIe, ADQ32-PCIe, ADQ33-PCIe, ADQ35-PCIe
	ADQ36-PXIe

	Single-Ended Signaling
	Differential Signaling
	Power
	Clock
	Pin Configuration
	Example: Pattern Generator Output
	Example: Pulse Generator Output
	Example: Software Controlled GPIO
	Example: Reference Clock Output

	Data Acquisition
	Dynamic Record Length
	Edge Windows
	Overlap and Maximum Length
	Zero Suppression for Unipolar Pulse Data
	Gated Acquisition

	Rearm Time
	Timing Information
	Floating Point Inaccuracies

	Starting and Stopping
	Trigger Blocking
	Zero Length Records

	Data Transfer and Data Readout
	Transfer Buffers
	Advanced Parameters

	Marker Buffers
	Advanced Use Cases

	Data Format
	Data Transfer
	Interface
	Program Flowchart
	Record Data Transfer Buffer Format
	Metadata Transfer Buffer Format

	Data Readout
	Interface
	Record Buffers
	Program Flowchart
	Status Events
	Zero Length Records
	Discarded Records
	Incomplete Records
	Optimizing Throughput

	Overflow
	Physical Interface (case 1)
	Transfer Interface (case 2)
	Continue on Overflow

	Eject
	Compression
	Amended Code to Voltage Conversion

	Calculating the Data Rate

	Test Pattern
	System Manager
	Firmware
	Channel Configuration

	License Management
	Temperature Monitoring
	Overtemperature Margin
	Overtemperature Protection

	Fan Control
	Example

	Front Panel LEDs
	STAT
	RDY
	USER

	EEPROM
	API
	SDK Installation
	Installing the SDK (Windows)
	Installing the SDK (Linux)

	Software Examples
	Identification
	Initialization
	Clock System
	Input Routing

	Configuration
	Acquisition
	Cleanup
	Parameter Space
	In Practice
	JSON

	Python API
	Installation

	API Reference
	Defines
	Enumerations
	Structures
	Initialization Parameters
	Configuration Parameters
	Status
	Data
	Other

	Functions
	General
	Identification
	Parameter Interface
	Data Acquisition
	Data Transfer
	Data Readout
	Status Monitoring
	Cleanup
	EEPROM
	Miscellaneous
	Development Kit

	Error Codes

	PCIe 16-Lane Mode
	Configuration
	Forced 8-Lane Mode

	Hugepages
	Host Configuration
	Mapping and Unmapping
	Example

