

ADQ35-WB Datasheet

The ADQ35-WB is a high-end 12-bit dual-channel data acquisition board optimized for high-throughput scientific applications. The ADQ35-WB features:

- One analog channel at 10 GSPS
- Two analog channels at 5 GSPS per channel
- 9 GHz usable analog bandwidth
- 12 bits resolution
- 14 Gbyte/s sustained data transfer rate to GPU
- 14 Gbyte/s sustained data transfer rate to CPU
- Two external triggers
- General purpose input/output (GPIO)
- Open FPGA for real-time signal processing
- Firmware option for averaging of records
- Firmware option for pulse analysis
- 10-bit data compression for continuous streaming to GPU

1 ORDERING INFORMATION

ADQ35-WB is available with a set of options listed in Table 1. Selection is done in three steps:

- 1. Select analog front-end configuration among related products.
- 2. Select the firmware options. The firmware FWDAQ is always included. Additional firmware options can be loaded into the board at any time.
- 3. Add additional features.

Table 1 Ordering information

Order code	Description	Datasheet	User guide
Related products	: Hardware analog front-end options ¹		
ADQ35-WB	AC-coupled wideband front-end. This document	20-2509	21-2539
ADQ35	General purpose DC coupled front-end	22-2918	21-2539
ADQ35-PDRX	Built-in dual-gain front-end for pulse data	22-2919	21-2539
Firmware options	5	1	1
-FWDAQ	Included data acquisition firmware. This document.	20-2509	21-2539
-FWATD	Firmware advanced time domain. Add thresholding and waveform averaging in FPGA	22-2912	21-2539
-FWPD	Firmware pulse detection. Detect and analyze pulses in FPGA.	23-3028	21-2539
-FWOCT ²	Firmware for Swept-Source OCT signal conditioning. K-space re-mapping, dispersion compensation, background subtraction, FFT	23-3019	23-3000
Additional featur	es	1	
DEVDAQ ³	Open FPGA for FWDAQ		20-2507
-W5Y	Extended warranty 5 years		

¹ The hardware options are factory installed and cannot be retrofit.

² Contact Teledyne SP Devices for information about availability.

³ The development kit **DEVDAQ** opens the FPGA for the user to add custom functions. **DEVDAQ** is a one-time purchase. The FPGA bit files built from the design project using **DEVDAQ** can be used on any ADQ35-WB with a valid **FWDAQ** license.

Datasheet ADQ35-WB 20-2509 B 2024-12-17 3 (21)

2 ADQ35-WB INTRODUCTION

2.1 Features

- One and two analog input channels
- 10, 8, or 6 GSPS sampling rates in single channel mode
- 5, 4, or 3 GSPS sampling rate per channel in dual channel mode
- 12 bits resolution
- AC-coupled with usable bandwidth 250 kHz 9 GHz
- Internal and external clock reference
- Clock reference output
- Internal and external triggers
- 8 Gbyte data memory
- 14 Gbyte/s sustained data streaming to CPU and GPU
- Data format 16-bit MSB aligned or 8 bits compression
- Compression to 10 or 12 bits for streaming to GPU
- Data interface PCIe Gen3 x16
- Averaging firmware FWATD
- Pulse analysis firmware FWPD
- Open FPGA enables custom digital down-conversion firmware

2.2 Applications

- Satellite monitoring
- RF IC test
- Radar
- Wireless communication
- Swept-Source Optical Coherence Tomography (SS-OCT)
- LIDAR
- Scientific instruments
- Distributed fiber optic sensing
- Software defined radio

2.3 Advantages

- A compact high-performance digitizer that optimizes the system solution
- Real-time processing and high data throughput
- Teledyne SP Devices' design services are available for fast integration to reduce time-tomarket
- Superior linearity and bandwidth for RF systems

2.4 System design optimization; open FPGA and streaming to CPU and GPU

High-performance data acquisition systems require high-speed real-time analysis. ADQ35-WB offers a variety of options for efficient system design:

Streaming to GPU

ADQ35-WB supports up to 14 Gbyte/s sustained peer-to-peer streaming and streaming via pinned buffer to GPU. A GPU offers a powerful platform for implementing application-specific signal processing algorithms. Compressing the data to 10 bits allows continuous streaming to GPU for implementation of multi-band receivers.

Streaming to CPU

ADQ35-WB supports up to 14 Gbyte/s sustained streaming to host computer. Implementation of application-specific algorithms in the CPU results in an efficient system.

Open FPGA for real-time processing

ADQ35-WB offers an open FPGA for implementation of the application-specific computations in the FPGA. This gives the most compact system design. The firmware development kit is ordered separately.

Digital Down-Conversion

Digital Down-Conversion (DDC) can be implemented in the open FPGA through the development kit DEVDAQ to reduce the data rate from the ADQ35-WB. This is useful when sending data to a CPU or to a disk. Using the 10-bit compression, all data can be streamed to a GPU and DDC and channelizers can be implemented in the GPU.

Usable analog bandwidth

Even though the traditional -3dB point is at 7 GHz, the frequency band up to 9 GHz has a smooth rolloff. It is thus possible to place the analog signal in this band and adjust the input power to match the attenuation of the ADQ35-WB. The digitizer is AC-coupled, and the lower 3-dB frequency is 500 kHz or lower (typically 250 kHz).

3 TECHNICAL DATA

Technical parameters are valid for ADQ35-WB operating with firmware FWDAQ. All parameters are typical unless otherwise noted.

Table 2 Analog input (front panel A and B)

Parameter	Condition	Min	Typical	Max	Unit
Basic parameters					
Bandwidth lower	-3 dB		250	500	kHz
Bandwidth upper	-3 dB		7		GHz
Usable bandwidth			9		GHz
Input range			1.4		Vpp
Input impedance	AC		50		Ω
Input impedance	DC		10		kΩ
Coupling			A	VC	
Connector type			SN	ЛА	
Dynamic performance 2 chan	nels mode at 5 GSP	S			
Crosstalk	< 5 GHz		-60		dB
Noise power density	0 to 2.5 GHz		-149		dBFS/Hz
SNR	Up to 2 GHz		53.5		dBc
SFDR	Up to 2 GHz		58		dBc
IM3	1.6 GHz, -7 dBFS		-70		dBc
IM3	5.9 GHz, -7 dBFS		-47		dBc
ENOB relative full scale	100MHz, -1 dBFS		8.8		bits
ENOB relative full scale	2 GHz, -1 dBFS		8.5		bits
Dynamic performance, 1 chan	nel mode at 10 GSI	PS, connecto	r A ⁴		
Noise power density	0 to 5 GHz		-152		dBFS/Hz
SNR	Up to 2 GHz		53		dBc
SFDR	Up to 2 GHz		58		dBc
IM3	1.6 GHz, -7 dBFS		-70		dBc
IM3	5.9 GHz, -7 dBFS		-47		dBc
ENOB relative full scale	100MHz, -1 dBFS		8.7		bits
ENOB relative full scale	2 GHz, -1 dBFS		8.4		bits

⁴ Performance parameters are valid for 1 channel mode using input A. There are no parameters available for 1 channel mode using input connector B.

Table 3 Clock generator and front panel CLK connector.

Parameter	Condition	Min	Typical	Max	Unit
Internal clock reference					
Frequency			10		MHz
Accuracy			±3		ppm
			±1/year		
Internal sampling clock generator ⁵					
Frequency range 1	2 channels		5000	5050 ⁶	MHz
Frequency range 2	2 channels		4000		MHz
Frequency range 3	2 channels		3000		MHz
Frequency range 1	1 channel		10000	10100 ⁶	MHz
Frequency range 2	1 channel		8000		MHz
Frequency range 3	1 channel		6000		MHz
Jitter	10 kHz - 20 MHz		150		fs RMS
External clock reference input	t (front panel CLK c	onnector) ^{7 8}			
Frequency		0.4	10	500	MHz
Frequency ⁹	Jitter cleaner	10	10	500	MHz
	enabled	-10 ppm		+10 ppm	
Frequency	Delay line used		10	100	MHz
Delay line tuning range			500		ps
Signal level		0.5		3.3	Vpp
Input impedance	AC		50		Ω
Input impedance	DC		10k		Ω
Input impedance (high) ¹⁰	AC		200		Ω
Connector type		SMA			
Clock reference output (front	panel CLK connect	or) ¹¹			
Frequency			10		MHz
Signal level	Into 50-Ω load		1.2		Vpp
Output impedance	AC		50		Ω
Output impedance	DC		10k		Ω

⁵ The internal clock generator can generate frequencies in three different ranges.

⁶ If the external clock reference deviates from its nominal value, the clock frequency can differ from expected. This is the maximum value where operation can be maintained.

⁷ Clock reference from an external source to synchronize the ADQ35-WB to the external source.

⁸ To minimize sampling clock jitter, the external reference should have as steep edges as possible. Therefore, a square wave with sharp edges is preferred over a sinewave, particularly at lower reference frequencies and amplitudes.

⁹ The jitter cleaner requires the reference frequency to be a multiple of 10 MHz within ± 10 ppm. ¹⁰ Software-selectable high-impedance mode.

¹¹ The internal clock reference of the ADQ35-WB can be made available to synchronize external equipment.

Table 4 Front panel TRIG connector

Parameter	Condition	Min	Typical	Max	Unit	
Connector type		SMA				
Used as input (or GPIO)						
Impedance			50		Ω	
Impedance (high) ¹²			500		Ω	
Signal level	50-Ω mode	-0.5		3.5	V	
Adjustable threshold	50-Ω mode	0		2.8	V	
Signal level	High impedance	-0.5		5.5	V	
Adjustable threshold	High impedance	0		2.3	V	
Pulse repetition frequency	As trigger			10	MHz	
Time resolution ¹³	As trigger		50		ps	
Update rate ¹³	As GPIO			156.25	MHz	
Used as output (or GPIO)	·					
Impedance			50		Ω	
Output level high VOH	Into 50-Ω load	1.8			V	
Output level low VOL	Into 50-Ω load			0.1	V	
Pulse repetition frequency				156.25	MHz	

Table 5 Front panel SYNC connector (may be used as a trigger source with larger timing grid)

Parameter	Condition	Min	Typical	Max	Unit
Connector type		SMA			
Used as input (or GPIO)					
Impedance			50		Ω
Impedance (high) ¹²			500		Ω
Signal range	50-Ω mode	-0.5		3.5	V
Adjustable threshold	50-Ω mode	0		2.8	V
Signal level	High impedance	-0.5		5.5	V
Adjustable threshold	High impedance	0		2.3	V
Pulse repetition frequency	As trigger			10	MHz
Time resolution ¹³	As trigger		3.2		ns
Update rate ¹³	As GPIO			156.25	MHz
Used as output (or GPIO)					
Impedance			50		Ω
Output level high VOH	Into 50-Ω load	1.8			V
Output level low VOL	Into 50-Ω load			0.1	V
Pulse repetition frequency				156.25	MHz

¹² Software-selectable high-impedance mode, suitable for source terminated signals.

¹³ Timing properties are valid for 5 GSPS in 2 channel mode and 10 GSPS in 1 channel mode. Timing properties scale linearly with sampling frequency.

Table 6 Front panel GPIO connector

Parameter	Condition	Min	Typical	Max	Unit
Connector type			SN	ЛA	
Used as input					
Impedance			50		Ω
Impedance (high) ¹⁴			10		kΩ
Input level high VIH		2			V
Input level low VIL				0.8	V
Update rate ¹⁵				156.25	MHz
Used as output					
Output Impedance			50		Ω
Output level high VOH	Into 50-Ω load	1.5			V
Output level high VOH	No load	3.2			V
Output level low VOL	Into 50-Ω load			0.1	V
Output level low VOL	No load			0.1	V
Update rate ¹⁵				156.25	MHz

Table 7 Environment and mechanical parameters

Parameter	Condition	Min	Typical	Max	Unit	
Power and temperature						
Power consumption ¹⁶	FWDAQ		48		W	
Supply voltage		10.8	12	13.2	V	
Operating temperature	FWDAQ ¹⁷	0		55	°C	
Operating temperature	FW options ¹⁸	0		45	°C	
Size						
Width 1 slot			18.42		mm	
Length			269.55		mm	
Height			111.15		mm	
Weight			600		g	
Compliances						
RoHS3		Yes				
CE		Yes				
FCC	Exclusion acco	on according to CFR 47, part 15, paragraph 15.103(c).				

¹⁴ Software-selectable high-impedance mode, suitable for source terminated signals.

¹⁶ Power consumption depends on firmware option and use case. Power consumption is measured during acquisition and streaming of data at 14 Gbyte/s to PC.

¹⁷ Operating the ADQ35-WB with FWDAQ and streaming data up to 14 Gbyte/s.

¹⁸ Using firmware options from Teledyne SP Devices. Custom firmware designs may result in higher power consumption and thereby a reduced temperature range.

¹⁵ Timing properties are valid for 5 GSPS in 2 channel mode and 10 GSPS in 1 channel mode. Timing properties scale linearly with sampling frequency.

Table 8 Custom GPIO expansion. See section 10.

Parameter	Value
Connector type	40-pin FFC/FPC connector, pitch 0.5 mm
Number of differential LVDS input signals ¹⁹	8
Number of single-ended 3.3-V LVCMOS I/O signals	5
Control bus	I2C, 3.3 V
Power supply	1.8 V, max 300 mA
	3.3 V, max 1 A
	5 V, max 600 mA

Table 9 Software support

Parameter	Value
Operating system ²⁰	Windows / Linux
GUI	Digitizer Studio
Example code	C, Python
ΑΡΙ	C / C++
High-level API	LabVIEW / MATLAB / C#

Table 10 Data transfer²¹

Parameter	Value	Unit
Supported versions of the PCIe data transfer standard	Gen1 / Gen2 / Gen3	
Supported number of lanes ^{22 23}	1/4/8/16	
Sustained data rate to CPU / GPU	14	Gbyte/s
Sustained data rate peer-to-peer to GPU	14	Gbyte/s
Data format to CPU ²⁴	32 / 16 / 8	bits
Data format for streaming to GPU	32 / 16 / 12 / 10 / 8	bits

¹⁹ The port can be set to output through the open FPGA development kit DEVDAQ.

²⁰ See 15-1494 for a detailed listing of supported distributions.

²¹ This is the data rate that the ADQ35-WB supports. Other parts of the system may limit the performance.

²² The ADQ35-WB must be installed in a 16 lanes slot or a slot with a connector with an open end. If a shorter connector is used, the number of lanes and the maximum data rate is limited.

²³ Bifurcation is required for 16 lanes.

²⁴ Default is 16 bits MSB-aligned.

Table 11 Data acquisition

Parameter	Condition / Description	Min	Typical	Max	Unit
Rearm time ²⁵				20	ns
Acquisition memory	Shared by all channels		8		Gbyte
(data FIFO)					
Record length	2 channels mode in steps of 1	2		2 ³² -1	samples
	1 channel mode in steps of 1	2		2 ³² -1	samples
Pre-trigger ²⁶	2 channels mode in steps of 16	0		16 336	samples
	1 channel mode in steps of 32	0		16 288	samples
Trigger delay ²⁷	2 channels mode in steps of 16	0		2 ³⁵ -16	samples
	1 channel mode in steps of 32	0		2 ³⁶ -32	samples
Trigger sources ²⁸	Start recording a set of data	External	"TRIG", "S	YNC" and "	GPIO"
		Logic OF	R of externa	l sources	
		Channel			
		Logic OF	R of channe	ls	
		Internal	generators		
		Softwar	e		
Recording modes	Record length setting	Static (s	et by user)		
		Dynamio	c (data cont	rolled)	
		Gated (t	rigger cont	rolled)	
		Continu	ous (unlimi [.]	ted)	
Timestamp reset	Reset or synchronize timestamp	External	"TRIG", "S	YNC" and "	GPIO"
		Softwar	e		
		Internal	periodic pu	ilse genera	tor

²⁵ Minimum time from the last sample of a record to the next trigger.

²⁶ Pre-trigger is set by assigning the parameter "horizontal offset" a negative value.

²⁷ Trigger delay is set by assigning the parameter "horizontal offset" a positive value.

²⁸ Trigger sources can be synchronized to clock reference for synchronous systems

4 FEATURES FOR DATA FLOW CONTROL, SYNCHRONIZATION AND PROCESSING

Table 12 Digital signal processing blocks

Object	Description
Digital Baseline Stabilizer (DBS)	Track and adjust the baseline to target level
Digital gain	Digital scaling of the signal
Digital offset	Add digital offset to signal
Digital FIR filter	User controlled 17 tap FIR filter
Sample skip	Skip samples after filtering to adjust sampling rate

Table 13 Pattern generators

Object	Description		
Pattern generator	2 instances of general pattern generators		
Periodic pulse generator	4 instances of periodic pulse generator		

Figure 1 Clock generation block diagram.

Table 14 Clock generation

Function	Modes		
Clock reference	Internal		
Phase and frequency reference for the	External through SMA connector CLK		
clock system	External with jitter cleaner and/or delay line		
Sampling clock	Internal clock generator		
ADC sampling clock			
Clock reference output	Internal clock reference (if selected as source)		

5 FIRMWARE

5.1 FWDAQ

The FWDAQ, "Firmware data acquisition" is included with all digitizers. The firmware enables control of the hardware and recording of data.

5.2 FWATD

The FWATD, "Firmware advanced time domain" is a specialized firmware sold separately. It provides functions for thresholding for noise suppression and advanced accumulations/averaging of waveforms. See datasheet 22-2912 for more details.

5.3 FWPD

The FWPD, "Firmware pulse detection", is a specialized firmware sold separately. It provides functions for detection and analysis of pulses. See datasheet 23-3028 for more details.

5.4 Managing firmware

The ADQ35-WB includes methods for managing different firmware options:

- The non-volatile memory on the digitizer can store up to four different firmware images, including the active firmware. The tool ADQAssist is used to change active image and to upload new images to the digitizer.
- Each hardware can include a license for multiple firmware images.
- If all firmware images of interest cannot be stored on the device, some may need be stored on the host computer for manual reprogramming via ADQAssist.
- The digitizer and the host computer must be power cycled to complete the switch of firmware image. This is required to let the PCIe bus enumerate with the new firmware.
- Some firmware features require a valid license key to activate. See the ordering information section 1 for details about available firmware features.
- Switching mode between one channel at 10 GSPS and two channels at 5 GSPS requires switching the digitizer firmware image.

6 ABSLOUTE MAXIMUM RATINGS

Table 15 Absolute maximum ratings

Parameter	Condition	Min	Max	Unit
Power supply		-0.4	14	V
Operating temperature ²⁹		0	55	°C
Storage temperature		-40	70	°C
Analog in	AC		5	V _{RMS}
	DC	-5	+5	V
TRIG, SYNC in 50-Ω mode	Powered	-2	5	V
	Not powered	-2	2	V
TRIG, SYNC in 500-Ω mode	Powered	-2	6	V
	Not powered	-2	2	V
CLK REF	AC		5	Vpp
	DC	-5	5	V
GPIO	Powered	-1.5	5	V
	Not powered	-1.5	1.5	V
FFC / FPC differential signal to GND	Powered ³⁰	-0.5	2.3	V
	Not powered ³⁰	-0.5	0.5	V
FFC / FPC single-ended signal	Powered ³⁰	-0.3	3.8	V
	Not powered ³⁰	-0.3	0.5	V

Exposure to conditions exceeding these ratings may reduce lifetime or permanently damage the digitizer. The digitizer with PCIe format has a built-in fan to cool the device. The built-in temperature monitoring unit will protect the digitizer from overheating by temporarily shutting down parts of the device in an overheat situation.

The SMA connectors have an expected lifetime of 500 operations. For frequent connecting and disconnecting of cables, connector savers are recommended.

²⁹ The absolute maximum temperature range where it is allowed to start the board.

³⁰ The absolute maximum ratings depend on whether the ADQ35-WB is powered or not. It is recommended to use the respective power rail in the FFC connector to power or enable the external drivers to avoid driving overvoltage into an unpowered digitizer. Use the 1.8 V rail for the differential signals and 3.3 V for the single-ended signals.

7 TYPICAL PERFORMANCE

7.1 Frequency response

Figure 2 Frequency response, logarithmic frequency scale. 0 dB is nominal input range 1.4 Vpp.

Datasheet ADQ35-WB 20-2509 B 2024-12-17 15 (21)

Figure 3 Frequency response on linear scale. 0 dB is nominal input range 1.4 Vpp.

Datasheet ADQ35-WB 20-2509 B 2024-12-17 16 (21)

Figure 4 Crosstalk.

Datasheet ADQ35-WB 20-2509 B 2024-12-17 17 (21)

Figure 6 FFT typical two-tone performance at 5.9 GHz.

8 BLOCK DIAGRAM

Figure 7 Block diagram.

Figure 7 shows a block diagram of ADQ35-WB in 2-channel mode. The boxes "User Logic" are available for custom real-time signal processing thought the firmware development kit (purchased separately).

9 HOST PC INTERFACE PCIE

The ADQ35-WB-PCIe is powered from the power supply of the PC via a PCI Express 8-pin (2x4) auxiliary power supply connector. The connection in the cable should be as in Figure 8. It is also possible to operate the board from a PCI Express 6-pin (2x3) auxiliary power supply connector. Consider the power ratings for the respective connectors from the PC manufacturer.

It is important that the auxiliary power supply is turned on immediately when the PC starts. Otherwise, the digitizer will not be recognized on the PCI Express bus.

10 GPIO EXPANSION

The FFC/FPC connector allows direct access to the FPGA for building custom expansion boards. The FPC connector requires custom firmware and is accessible through the FPGA development kit. The ADQ35-WB user guide document number 21-2539 contains a description of the connector.

Note that this connector is connected directly to the FPGA. Damage caused by custom hardware failure is not covered by warranty.

Contact Teledyne SP Devices' sales representative for more information.

11 MECHANICAL DRAWING

Figure 9 Photo of ADQ35-WB.

Figure 10 Mechanical drawing, dimensions in millimeters.

12 REFERENCES

Refer to Teledyne SP Devices' web site spdevices.com for the latest version of supplementary documents.

- 15-1494 Supported operating systems
- 18-2059 ADQUpdater user guide
- 20-2507 ADQ3 series development kit user guide
- 20-2521 ADQAssist user guide
- 21-2539 ADQ3 series user guide
- 22-2912 ADQ3 FWATD datasheet
- 22-2918 ADQ35 datasheet
- 22-2919 ADQ35-PDRX datasheet
- 23-3028 ADQ3 FWPD datasheet

Important Information

Teledyne Signal Processing Devices Sweden AB (Teledyne SP Devices) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Teledyne SP Devices' general terms and conditions supplied at the time of order acknowledgment.

Teledyne SP Devices warrants that each product will be free of defects in materials and workmanship and conform to specifications set forth in published data sheets, for a period of three (3) years. The warranty commences on the date the product is shipped by Teledyne SP Devices. Teledyne SP Devices' sole liability and responsibility under this warranty is to repair or replace any product which is returned to it by Buyer and which Teledyne SP Devices determines does not conform to the warranty. Product returned to Teledyne SP Devices for warranty service will be shipped to Teledyne SP Devices at Buyer's expense and will be returned to Buyer at Teledyne SP Devices' expense. Teledyne SP Devices will have no obligation under this warranty for any products which (i) has been improperly installed; (ii) has been used other than as recommended in Teledyne SP Devices' installation or operation instructions or specifications; or (iii) has been repaired, altered or modified by entities other than Teledyne SP Devices. The warranty of replacement products shall terminate with the warranty of the product. Buyer shall not return any products for any reason without the prior written authorization of Teledyne SP Devices.

In no event shall Teledyne SP Devices be liable for any damages arising out of or related to this document or the information contained in it.

TELEDYNE SP DEVICES' EXPRESS WARRANTY TO BUYER CONSTITUTES TELEDYNE SP DEVICES' SOLE LIABILITY AND THE BUYER'S SOLE REMEDY WITH RESPECT TO THE PRODUCTS AND IS IN LIEU OF ALL OTHER WARRANTIES, LIABILITIES AND REMEDIES. EXCEPT AS THUS PROVIDED, TELEDYNE SP DEVICES DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

TELEDYNE SP DEVICES DOES NOT INDEMNIFY, NOR HOLD THE BUYER HARMLESS, AGAINST ANY LIABILITIES, LOSSES, DAMAGES AND EXPENSES (INCLUDING ATTORNEY'S FEES) RELATING TO ANY CLAIMS WHATSOEVER. IN NO EVENT SHALL TELEDYNE SP DEVICES BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFIT, LOST DATA AND THE LIKE, DUE TO ANY CAUSE WHATSOEVER. NO SUIT OR ACTION SHALL BE BROUGHT AGAINST TELEDYNE SP DEVICES MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS ACCRUED. IN NO EVENT SHALL THE ACCRUED TOTAL LIABILITY OF TELEDYNE SP DEVICES FROM ANY LAWSUIT, CLAIM, WARRANTY OR INDEMNITY EXCEED THE AGGREGATE SUM PAID TO SP BY BUYER UNDER THE ORDER THAT GIVES RISE TO SUCH LAWSUIT, CLAIM, WARRANTY OR INDEMNITY.

Worldwide Sales and Technical Support

www.spdevices.com

Teledyne SP Devices Corporate Headquarters

Teknikringen 8D SE-583 30 Linköping Sweden Phone: +46 (0)13 465 0600 Fax: +46 (0)13 991 3044 Email: <u>info@spdevices.com</u>

Copyright © 2024 Teledyne Signal Processing Devices Sweden AB. All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.