
ADQ Disk Streaming
User Guide

Author(s): Teledyne SP Devices

Document ID: 22-2761

Classification: Public

Revision: A

Print date: 2022-06-10

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

Contents

1 Introduction 3

1.1 Definitions and Abbreviations . 3

2 Overview 4

2.1 ADQAPI . 4

2.2 ADNVDS . 4

2.3 Installation . 4

2.3.1 Windows . 5

2.3.2 Linux . 5

2.3.3 Firmware . 5

2.4 Data Flow . 6

2.5 Hardware support . 6

3 Data acquisition 7

3.1 Monitoring channels . 7

3.2 Disk streaming data and metadata . 8

3.3 Disk sequencing . 8

3.4 Disk interleaving . 9

3.5 Overflow conditions . 9

3.6 Parameter differences relative to standard firmware . 9

3.6.1 Data acquisition parameters . 9

3.6.2 Data transfer parameters . 10

3.6.3 Data readout parameters . 10

4 Disk streaming example 10

5 Disk reading 12

5.1 Disk read example . 12

5.2 Metadata parsing . 12

A ADQAPI Reference 15

A.1 Structures . 16

A.2 FWDSU Functions . 26

A.3 Metadata Parsing Functions . 29

ADQ Disk Streaming spdevices.com Page 1 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

Document History

Revision Date Section Description Author

A 2022-06-13 - Initial revision TSPD

ADQ Disk Streaming spdevices.com Page 2 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

1 Introduction

ADQ Disk Streaming is a high-speed data recording solution which enables writing data directly from a

digitizer to NVMe drives over PCI Express without high load on host CPU or RAM. ADQ Disk Streaming

is available for both Windows and Linux operating systems. For supported versions see [1]. With ADQ

Disk Streaming, data from a digitizer can be continuously written to multiple disks and multiple digitizers

can simultaneously write to disks in the same system as long as the disks are not shared.

 Important

This document is only valid for the following digitizer models:

• ADQ7 (requires FWDSU firmware package)

1.1 Definitions and Abbreviations

Table 1 lists the definitions and abbreviations used in this document.

Table 1: Definitions and abbreviations used in this document.

Item Description

NVMe Non-Volatile Memory Express

ADNVDS ADQ Non-Volatile Data Storage

FWDSU Disk storage firmware package for digitizers

BAR Base Address Register

ADQ Disk Streaming spdevices.com Page 3 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

2 Overview

To use ADQ Disk Streaming on a system the disks and digitizers must be connected to a common PCI

Express bus. The digitizers need to run the FWDSU firmware package with a valid license installed. A

complete specification for the FWDSU firmware package can be found in the FWDSU datasheet [2] Disk

streaming is intended to be integrated in existing applications by using documented API calls. Examples

are provided as a starting point for development. As illustrated in Fig. 1 the digitizer is controlled via the

ADQAPI library and the disk by the ADNVDS library respectively.

User Application

ADNVDS

ADQAPI

Digitizer Disk

Driver layer

Library

Hardware

Figure 1: ADQ Disk Streaming user applications use two different libraries.

2.1 ADQAPI

ADQAPI is the standard library for controlling the digitizers. For details seeADQAPI Reference Guide [3]

2.2 ADNVDS

ADNVDS is the software library that enables disks to act as a storage endpoints for ADQ digitizers. It

consists of the following parts:

• Library initialization - enabling usage of the library.

• Device management - retrieving device parameters and binding disks to ADNVDS.

• Data storage - handles the writing of data from digitizer to the disk.

• Data readout - copying data from the disk to the host RAM.

A disk that is used as storage endpoint has no file system. To retrieve data from disks ADNVDS support

reads of data both as stored, and through a dataset abstraction. For a detailed description of theADNVDS

API, please see the ADNVDS library reference manual [4].

2.3 Installation

All the necessary software and firmware components for using disk streaming are provided in the FWDSU

release archive.

ADQ Disk Streaming spdevices.com Page 4 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

2.3.1 Windows

For Microsoft Windows the ADQAPI SDK is installed by running

TSPD-SDK-installer_rXXXXX.exe

and following the instructions. The XXXXX part of the file name is the version number. The archive contains

installation files, example code and documentation.

The ADNVDS library and NVMe driver is installed by running

ADQNVMeInstaller.exe

The disks that are intended to be used for streamingmust have their driver updatedmanually by providing

the serial numbers to NVMeBind.exe found in C:\Program Files\SP Devices ADQNVMe\driver. Note

that this command must be executed as administrator and that it is only possible to install for device

listed in Table 2.

2.3.2 Linux

The ADQAPI SDK is supported for several Linux distributions and versions. The complete list can be

found in the document listing operating system support [1]. The installation files are included in

adqguitools_linux_rXXXXX.tar.gz

where XXXXX is the version number. The archive contains installation files, example code and documen-

tation. The README file, located in the root directory of the archive, describes the installation procedure

in detail for the different distributions.

The installation files for the ADNVDS library are included in

dsu7_sdk_linux_rXXXXX.tar.gz

To allow ADNVDS access to the drives, a shell script named

setup_adnvds.sh

is also provided. This shell script must be run once after every boot of the system, before any disk

streaming acquisition takes place. The default behavior of the shell script is to look for a file named

$(hostname)_SPD*.txt

in the same directory as the script, containing a space-separated list of disk serial numbers to associate

with the ADNVDS driver. This file must be created by the user and filled with the correct serial numbers

for the system before the shell script can be executed.

2.3.3 Firmware

FWDSU firmware images can be found in the firmware folder of the release archive. Please see the

ADQUpdater User Guide [5] for instructions on how to upload the firmware images to the digitizer. The

ADQ Disk Streaming spdevices.com Page 5 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

FWDSU firmware requires a valid FWDSU firmware license to be present on the digitizer.

2.4 Data Flow

For a complete definition of how NVMe disks operate, see the NVMe specification [6]. In short, the

concept is that instructions are sent to the disk which define how data should be transferred. The actual

data transfer is then executed by the disk itself. Normally these operations are data reads by the disk

from RAM to be stored on the disk, or data writes from the disk to RAM. When using ADNVDS the disk

is instead instructed to fetch data directly from the digitizer. This happens without placing data in host

RAM first. Fig. 2 shows how the user application drives the data transfer by adding commands in the

command queue. The status of completed commands are read from a response queue.

Command DiskApplication

Control

Data

Responses

Digitizer

Figure 2: Data is read directly from the digitizer to the disk when using ADNVDS.

 Warning

In the event of a crash of the user application the disks will continue their operation and will fetch

commands from the now invalid RAM, and an accidental overwrite of previously recorded data may

occur. Therefore, disks used by ADNVDS should not be seen as permanent storage and captured

data that is critical should be read out to permanent storage before recording new data. Terminating

the data recording in a non-graceful way risks causing a crash.

2.5 Hardware support

Only disks recommended by Teledyne SP Devices are guaranteed to work with ADNVDS. All disks used

by ADNVDS in a system should be of the same model and size for reliable operation. See Table 2 for a

list of recommended disks. It is recommended to contact us for guidance. Note that write speed may be

limited when writing to less than 8 drives simultaneously.

 Important

When using Windows it is not possible to use other devices than listed in Table 2. For Linux it is

possible but not recommended.

In PCI Express systems, there are many third party alternatives for disk carrier boards. See Table 3 for

a list of carrier boards that are verified with ADNVDS. It is recommended to contact us for guidance.

ADQ Disk Streaming spdevices.com Page 6 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

Table 2: Supported NVMe drives.

Manufacturer Product Comment

Samsung 980 PRO 1 TB

Samsung 980 PRO 2 TB

Samsung 970 PRO 1 TB

Sabrent Rocket 4 TB

Sabrent Rocket 4+ 4 TB Heat sink is required

Table 3: Supported PCIe carrier boards.

Manufacturer Product Comment

Asus Hyper M2 x16 Motherboard x4x4x4x4 bifurcation

support required

Asus Hyper M2 x16 gen4 Motherboard x4x4x4x4 bifurcation

support required

Supermicro AOC-SHG3-4M2P-O Limited to 5GB/s

In PXI Express systems, there are fewer disk carrier alternatives. For this reason, Teledyne SP Devices

provides the ADQDSU carrier board, complete with disks. See the ADQDSU datasheet [7] for more

information.

3 Data acquisition

Much of the initial setup of a disk streaming capable digitizer works in the same way as with the standard

FWDAQ firmware. The ADQGen3 Streaming User Guide [8] should be reviewed first. The information

presented here is intended to describe differences and new features in the configuration of the FWDSU

firmware package relative to the standard firmware, not to give a complete description. Note also that

the gen3_streaming code example is supported by the FWDSU firmware and can be used as a first step

to test acquisition settings without needing to stream to disk.

3.1 Monitoring channels

The FWDSU firmware package adds duplicates of the standard channels to the firmware data path. The

duplicate channels, referred to as monitoring channels, will have the sample sample skip or decima-

tion setting as the standard channel, but can have their trigger source and acquisition parameters such

as record length configured independently from the standard channels. The typical use case for the

monitoring channels is to periodically acquire records to the host RAM via regular streaming during a

disk streaming acquisition, and continuously analyze it to ensure that the measurement is working as

intended.

Typically, the data rate for the standard channels which are streamed to the disks is high and cannot

be monitored continuously by the host. The extra monitoring channels provide a way to reduce the data

ADQ Disk Streaming spdevices.com Page 7 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

rate, by for example using a shorter record length compared to the standard channels, or using a trigger

source with a lower trigger rate than the one use for the standard channels.

 Important

There is a maximum limit for the combined record length for all the active monitoring channels of

32768 samples. One active monitoring channel can have up to 32768 samples of record length, two

active monitoring channels can have record lengths up to 16384 samples each, and so on.

To support a different trigger source for the monitoring channels compared to the regular disk streaming

channels, the monitoring channels all use the auxiliary trigger, which is set via the ADQAPI command

SetAuxTriggerMode. Refer to Table 4 and Table 5 for the channel indexes, trigger sources and disk

streaming capabilities of the channels in the available FWDSU versions.

Table 4: Channel configuration on ADQ7 with two-channel FWDSU firmware.

Index Analog input Trigger source Supports disk streaming

0 Channel A Channel A trigger source X

1 Channel B Channel B trigger source X

2 Channel A Auxiliary trigger

3 Channel B Auxiliary trigger

Table 5: Channel configuration on ADQ7 with one-channel FWDSU firmware.

Index Analog input Trigger source Supports disk streaming

0 Channel X Channel X trigger source X

1 Channel X Auxiliary trigger

3.2 Disk streaming data and metadata

During a disk streaming acquisition, both data and metadata will be written to the disks. Some examples

of metadata stored for each record are the timestamp of the trigger event, the record length, and status

information that can help detect if data has been lost due to data rate limitations in the system. The

disks therefore need to be partitioned according to the expected ratio between data and metadata for

the given acquisition parameters. The partitioning is specified via the metadata_start_lba parameter

when registering an ADNVDS transfer via adnvds_wr_register_transfer.

3.3 Disk sequencing

For long acquisitions which will generate large amounts of data, multiple disks can be put together in

sequence for a digitizer channel. In this case, the streaming will fill up one disk, and then move on

to the next and continue writing there. The disk switching is seamless and will not cause any gaps

ADQ Disk Streaming spdevices.com Page 8 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

in the acquired data. Disk sequencing is enabled by setting the num_endpoints parameter to a value

greater than one, and providing a list of disk serial numbers of corresponding length via ns_handles
when registering an ADNVDS transfer through adnvds_wr_register_transfer.

3.4 Disk interleaving

For acquisitions which will produce a high continuous data rate, the write speed of a single disk may

not be enough to keep up. To handle this, multiple disks can be interleaved for each digitizer channel.

The streaming of data will then continuously switch between the interleaved disks, writing a burst of

data to one disk at a time. Disk interleaving is enabled by sequencing the disks as described in Sec-

tion 3.3, followed by setting an interleaving factor to a value greater than 1 via the ADNVDS function

adnvds_wr_set_group_interleave. Refer to Table 6 for supported disk interleaving factors.

Table 6: Supported disk interleaving factors per channel.

Product Firmware type Supported interleaving factors per channel

ADQ7 Two-channel 1, 2, 4

ADQ7 One-channel 1, 2, 4, 8

3.5 Overflow conditions

The digitizer will use its on-board DRAM as a buffer between the data from the digitizer channels, and the

streaming of the data to disk. In the event that the disk cannot keep up with the data from the digitizer,

the DRAM buffer will fill up, and data will start to be discarded at the DRAM write side. This can be

detected by reviewing the record metadata. Both the DSU7MetadataRaw structure and the fully parsed

DSU7RecordHeader contain counters for LostRecords and LostCycles. The standard overflow detection

via the ADQAPI function GetStreamOverflow will also signal an overflow when this occurs.

3.6 Parameter differences relative to standard firmware

This section will describe new features in the parameter interface that are specific to disk streaming.

Please see the ADQGen3 Streaming User Guide [8] for documentation of the rest of the parameter

structures.

3.6.1 Data acquisition parameters

The dsu_forced_metadata_interval parameter, when set to a value lower than the record length, will

force the firmware to periodically generate record metadata throughout the record. This means that a

record will havemultiple corresponding record headers stored on the disk. This can be seen in the header

by checking bit 0 in the RecordStatus field, which will only be set to 1 in the final metadata generated

by the record.

ADQ Disk Streaming spdevices.com Page 9 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

In the FWDSU firmware, record metadata is not written to disk until at the end of a record. This means

that during, for example, a data acquisition with the record length is set to ADQ_INFINITE_RECORD_LENGTH,
no metadata will be generated, unless dsu_forced_metadata_interval is set.

Setting a fixed metadata interval also allows for more granularity when determining where data was

discarded during an overflow condition, as the LostRecords and LostCycles will cover a lower amount

of data.

This can also be useful as a safety precaution in the event of fatal events such as power outages

and system crashes. The metadata is written to disk in bursts of length ADNVDS_COMMAND_SIZEmultiplied

with the interleaving factor, which means that the metadata for a large number of records can be lost at

a sudden stop.

3.6.2 Data transfer parameters

The dsu_doorbell_value_mask and dsu_operation_size parameters must be set with values from the

ADNVDS library for disk streaming to function correctly. Please see the parameter descriptions for further

information.

To enable disk streaming for a given channel, the dsu_record_enabled and dsu_metadata_enabled
parameters must be set. It is not possible to enable disk streaming on the channel indexes corresponding

to the monitoring channels.

Any disk streaming enabled channels must have both dsu_record_enabled_endpoints_
mask and dsu_metadata_enabled_endpoints_mask set with values from the ADNVDS function

adnvds_wr_get_ADQ_DSU_setup_params.
To enable streaming of records to the host RAM, the record_enabled and metadata_enabled pa-

rameters must be set. This is typically only done for the monitoring channels, but can be enabled on any

channel if desired.

3.6.3 Data readout parameters

The data readout parameter interface is only used for readout of monitoring channel data to the host

system. For the streaming of data to disk, the data readout parameters are not relevant. There are no

changes to the data readout parameters relative to the standard firmware.

4 Disk streaming example

The example source code for setting up a disk streaming acquisition can be found in the SDK installation

directory, under

<Path to installation directory>/examples/disk_streaming

 Note

Before compiling and executing the example, the settings.h file should be reviewed and updated. At a

minimum, the list of disk serial numbers must be updated to match the disks in present in the system.

The outline of the program flow in the disk_streaming example is as follows:

ADQ Disk Streaming spdevices.com Page 10 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

1. Initialize ADQAPI and connect to the digitizer

2. Configure data acquisition, readout and transfer parameters according to the given use case. By

default, the example will configure an infinite number of records, triggered by the periodic event

source.

3. Initialize ADNVDS and attach the disks to the ADNVDS instance

4. Configure disk streaming for each digitizer channel and corresponding disk group, including

(a) Partition the disks into data and metadata sections according to the ratio of metadata to data

that will be generated by the given data acquisition parameters

(b) Retrieve the PCI Express BAR address information from the digitizer

(c) Set up and start an ADNVDS disk transfer from the BAR address to the disks

(d) Set disk streaming specific data transfer parameters for the digitizer

5. Start the data acquisition, and then loop

(a) Call theADNVDS function adnvds_poll, which will update the queues of NVMe I/O commands

to keep the transfers going

(b) Check the ADNVDS transfer status for each digitizer channel to see how much new data has

been stored

(c) If no new bytes have been stored for the default time-out of two seconds, or if we’ve reached

the data limit from the settings, FlushDMA() will be issued to get any remaining data trans-

ferred. When a time-out occurs again after flushing, the loop will exit.

(d) Receive any new record buffers from the monitoring channels. By default the example dis-

cards the records without processing them in any way.

6. Let ADNVDS write the final metadata to the disks with the finish command

7. Stop the data acquisition

8. Stop and unregister all ADNVDS transfers

9. Shut down the ADQAPI and ADNVDS instances, and then exit

 Warning

It is important that the adnvds_poll function is continuously called at a high rate during the acquisition
to keep the disk streaming going. Adding, for example, monitoring channel data analysis to the main

loop of the example can reduce the polling rate and cause the disk streaming to terminate. Keep any

calculations that take significant time in a separate thread from the main loop.

 Important

The FlushDMA() function should always be called at the end of a disk streaming acquisition, to ensure

that no record metadata is lost.

ADQ Disk Streaming spdevices.com Page 11 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

5 Disk reading

5.1 Disk read example

The example source code for reading data and metadata from a disk can be found in the SDK installation

directory, under

<Path to installation directory>/examples/disk_streaming/disk_read

 Note

Before compiling and executing the example, the settings.h file should be reviewed and updated. At a

minimum, the list of disk serial numbers must be updated to match the disks in present in the system.

The example is by default limited to only read a small amount of data and only the first few metadata

blocks. The program flow is as follows:

1. Initialize ADNVDS and attach the disks to the ADNVDS instance

2. Read the adnvds_rd_data_set struct using adnvds_rd_init.

3. For each dataset:

(a) Print the dataset information found in the struct

(b) Read a small number of DSU7MetadataRaw headers using adnvds_rd_get_metadata.

(c) Generate complete DSU7RecordHeaders using the method in Section 5.2.

(d) Print the information found in the record headers.

(e) Read a small amount of sample data and store it to a file

4. Free the datasets

5. Shut down ADNVDS, and exit

5.2 Metadata parsing

The disk streaming acquisition stores metadata for each record on the disk in the form of DSU7Metadata-
Raw headers. It also stores general information about the data acquisition setup at the start of the disk,

which can be read out using the ADNVDS function adnvds_rd_init. By combining the acquisition infor-

mation from theADNVDS dataset and the rawmetadata headers, complete DSU7RecordHeadermetadata

can be generated. The process is as follows:

1. Read the adnvds_rd_data_set struct using adnvds_rd_init.

2. Read the DSU7MetadataRaw headers using adnvds_rd_get_metadata.

3. Create a parser object using ADQData_Create().

4. Initialize the parser object with ADQData_InitPacketStream(), by passing adnvds_rd_data_set->adqdata_device_struct.

ADQ Disk Streaming spdevices.com Page 12 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

5. Allocate memory for storing the final DSU7RecordHeaders

6. Parse the metadata into DSU7RecordHeaders using ADQData_ParseDiskStreamHeaders().

The DSU7RecordHeader is relatively similar to the ADQRecordHeader generated during regular streaming.

There are a few key differences:

1. The RecordStatus field has a different bit definition

2. The RecordLength is 64-bit instead of 32-bit to handle long acquisitions

3. The LostRecords member has been added

4. The LostCycles member has been added

ADQ Disk Streaming spdevices.com Page 13 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

References

[1] Teledyne Signal Processing Devices Sweden AB, 15-1494 Digitizer OS Support. Technical Specifi-

cation.

[2] Teledyne Signal Processing Devices Sweden AB, 21-2578 ADQ7 FWDSU datasheet. Technical

Specification.

[3] Teledyne Signal Processing Devices Sweden AB, 14-1351 ADQAPI Reference Guide. Technical

Manual.

[4] Teledyne Signal Processing Devices Sweden AB, ADNVDS Library Reference Guide. Technical

Manual.

[5] Teledyne Signal Processing Devices SwedenAB, 18-2059 ADQUpdater User Guide. Technical Man-

ual.

[6] NVM Express, Inc., NVM Express Base Specification, revision 2.0b, January 2022. Technical Spec-

ification.

[7] Teledyne Signal Processing Devices Sweden AB, 21-2575 ADQDSU datasheet. Technical Specifi-

cation.

[8] Teledyne Signal Processing Devices Sweden AB, 20-2465 ADQGen3 Streaming User Guide. Tech-

nical Manual.

ADQ Disk Streaming spdevices.com Page 14 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

A ADQAPI Reference

This appendix contains the documentation of the structures and functions that are used in disk streaming

and that differ relative to the documentation in the ADQGen3 Streaming User Guide [8]. These descrip-

tions are intended to complement the ADQAPI reference guide [3].

 Important

All objects described in the following sections are defined in the ADQAPI.h header file. Please refrain

from redefining constants and structures.

ADQ Disk Streaming spdevices.com Page 15 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

A.1 Structures

ADQDataAcquisitionParameters . 16

ADQDataAcquisitionParametersCommon . 16

ADQDataAcquisitionParametersChannel . 17

ADQDataTransferParameters . 18

ADQDataTransferParametersCommon . 18

ADQDataTransferParametersChannel . 20

struct ADQDataAcquisitionParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQDataAcquisitionParametersCommon common;
struct ADQDataAcquisitionParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters for the data acquisition process.

Members

id (enum ADQParameterId)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

reserved (int32_t)

Reserved

common (struct ADQDataAcquisitionParametersCommon)

A ADQDataAcquisitionParametersCommon struct holding parameters that apply to all channels.

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQDataAcquisitionParametersChannel)

An array of ADQDataAcquisitionParametersChannel structs where each element represents the

data acquisition parameters for a channel. The struct at index 0 targets the first channel.

magic (uint64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

struct ADQDataAcquisitionParametersCommon {
int64_t reserved;

}

Description

This struct is a member of ADQDataAcquisitionParameters and defines data acquisition parameters

that apply to all channels.

ADQ Disk Streaming spdevices.com Page 16 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

Members

reserved (int64_t)

Reserved

struct ADQDataAcquisitionParametersChannel {
int64_t horizontal_offset;
int64_t record_length;
int64_t nof_records;
int64_t dsu_forced_metadata_interval;
enum ADQEventSource trigger_source;
enum ADQEdge trigger_edge;
enum ADQFunction trigger_blocking_source;

}

Description

This struct is a member of ADQDataAcquisitionParameters and defines data acquisition parameters for

a channel.

Members

horizontal_offset (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

record_length (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

nof_records (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

dsu_forced_metadata_interval (int64_t)

This parameter only applies to channels that are being streamed to disk. For long (or infinite

length) records, this parameter can be used to transmit metadata more often than just once per

record, by setting it to a value lower than the record length. The value is set in units of samples.

 Important

In the current FWDSU release, using different values for dsu_forced_metadata_interval per
channel is not supported. The value for channel index 0 will be used for all channels.

trigger_source (enum ADQEventSource)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

trigger_edge (enum ADQEdge)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

ADQ Disk Streaming spdevices.com Page 17 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

trigger_blocking_source (enum ADQFunction)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

struct ADQDataTransferParameters {
enum ADQParameterId id;
int32_t reserved;
struct ADQDataTransferParametersCommon common;
struct ADQDataTransferParametersChannel channel[ADQ_MAX_NOF_CHANNELS];
uint64_t magic;

}

Description

This struct defines the parameters for the data transfer process.

Members

id (enum ADQParameterId)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

reserved (int32_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

common (struct ADQDataTransferParametersCommon)

A ADQDataTransferParametersCommon struct holding data transfer parameters that apply to all

channels.

channel[ADQ_MAX_NOF_CHANNELS] (struct ADQDataTransferParametersChannel)

An array of ADQDataTransferParametersChannel structs where each element represents the data

transfer parameters for a channel. The struct at index 0 targets the first channel.

magic (uint64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

struct ADQDataTransferParametersCommon {
int64_t record_buffer_packed_size;
int64_t metadata_buffer_packed_size;
enum ADQMarkerMode marker_mode;
int32_t write_lock_enabled;
int32_t transfer_records_to_host_enabled;
int32_t packed_buffers_enabled;
uint32_t dsu_doorbell_value_mask;
int32_t dsu_operation_size;

}

Description

This struct is a member of ADQDataTransferParameters and defines data transfer parameters that apply

ADQ Disk Streaming spdevices.com Page 18 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

to all channels.

Members

record_buffer_packed_size (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

metadata_buffer_packed_size (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

marker_mode (enum ADQMarkerMode)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

write_lock_enabled (int32_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

transfer_records_to_host_enabled (int32_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

packed_buffers_enabled (int32_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

dsu_doorbell_value_mask (uint32_t)

This parameter must be set to doorbell_wrap_depth - 1, retrieved via the function

adnvds_wr_get_ADQ_DSU_setup_params, to let the digitizer know the depth of the NVMe

I/O command queue.

dsu_operation_size (int32_t)

The size of an NVMe I/O command in bytes. Must be set to the ADNVDS_COMMAND_SIZE define

from the ADNVDS library.

ADQ Disk Streaming spdevices.com Page 19 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

struct ADQDataTransferParametersChannel {
uint64_t record_buffer_bus_address;
uint64_t metadata_buffer_bus_address;
uint64_t marker_buffer_bus_address;
int64_t nof_buffers;
int64_t record_size;
int64_t record_buffer_size;
int64_t metadata_buffer_size;
int64_t record_buffer_packed_offset;
int64_t metadata_buffer_packed_offset;
volatile void * record_buffer;
volatile void * metadata_buffer;
volatile void * marker_buffer;
int32_t record_length_infinite_enabled;
int32_t record_enabled;
int32_t metadata_enabled;
int32_t dsu_record_enabled;
int32_t dsu_metadata_enabled;
uint32_t dsu_record_enabled_endpoints_mask;
uint32_t dsu_metadata_enabled_endpoints_mask;

}

Description

This struct is a member of ADQDataTransferParameters and defines the data transfer parameters for a

channel.

Members

record_buffer_bus_address (uint64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

metadata_buffer_bus_address (uint64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

marker_buffer_bus_address (uint64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

nof_buffers (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

record_size (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

record_buffer_size (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

ADQ Disk Streaming spdevices.com Page 20 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

metadata_buffer_size (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

record_buffer_packed_offset (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

metadata_buffer_packed_offset (int64_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

record_buffer (volatile void *)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

metadata_buffer (volatile void *)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

marker_buffer (volatile void *)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

record_length_infinite_enabled (int32_t)

Please see the ADQGen3 Streaming User Guide [8] for a complete description.

record_enabled (int32_t)

When set to 1, enables the transfer of record data via the regular streaming interface to the host

RAM.

metadata_enabled (int32_t)

When set to 1, enables record headers in the transfer of records via the regular streaming interface

to the host RAM.

dsu_record_enabled (int32_t)

When set to 1, enables the transfer of record data to disk via disk streaming.

dsu_metadata_enabled (int32_t)

When set to 1, enables the transfer of record metadata to disk via disk streaming.

dsu_record_enabled_endpoints_mask (uint32_t)

When dsu_record_enabled is set to 1, this parameter is used to set the endpoint indexes

that are active for streaming of data from this channel. The indexing is handled by AD-

NVDS and should not be set manually, and must instead be retrieved via the function

adnvds_wr_get_ADQ_DSU_setup_params.

dsu_metadata_enabled_endpoints_mask (uint32_t)

When dsu_metadata_enabled is set to 1, this parameter is used to set the endpoint indexes

that are active for streaming of metadata from this channel. The indexing is handled by

ADNVDS and should not be set manually, and must instead be retrieved via the function

adnvds_wr_get_ADQ_DSU_setup_params.

ADQ Disk Streaming spdevices.com Page 21 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

struct DSU7MetadataRaw {
uint8_t pad;
uint8_t status;
uint8_t trigger;
uint8_t user_id;
uint16_t general_purpose_start;
uint16_t trigger_extended_precision;
uint64_t timestamp;
uint16_t lost_records;
uint16_t lost_cycles;
uint32_t record_number;
uint64_t record_length;

}

The raw record metadata stored on disk during a disk streaming acquisition, which can be parsed into a

complete DSU7RecordHeader.

Members

pad (uint8_t)

Reserved.

status (uint8_t)

This member has the same definition as RecordStatus in the complete header.

trigger (uint8_t)

This member contains trigger information used internally by the ADQAPI during generation of the

final DSU7RecordHeader. It should not be used directly.

user_id (uint8_t)

This member has the same definition as UserID in the complete header.

general_purpose_start (uint16_t)

This member contains data path state information used internally by the ADQAPI during genera-

tion of the final DSU7RecordHeader. It should not be used directly.

trigger_extended_precision (uint16_t)

This member contains trigger information used internally by the ADQAPI during generation of the

final DSU7RecordHeader. It should not be used directly.

timestamp (uint64_t)

This member contains timestamp information used internally by the ADQAPI during generation of

the final DSU7RecordHeader. It should not be used directly.

lost_records (uint16_t)

This member has the same definition as LostRecords in the complete header.

ADQ Disk Streaming spdevices.com Page 22 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

lost_cycles (uint16_t)

This member has the same definition as LostCycles in the complete header.

record_number (uint32_t)

This member has the same definition as RecordNumber in the complete header.

record_length (uint64_t)

The record length as a 64-bit value. Here, this is expressed in units of datapath clock cycles, while

the RecordLength field in the complete header counts in samples.

struct DSU7RecordHeader {
uint8_t RecordStatus;
uint8_t UserID;
uint8_t Channel;
uint8_t DataFormat;
uint32_t SerialNumber;
uint32_t RecordNumber;
int32_t SamplePeriod;
uint64_t Timestamp;
int64_t RecordStart;
uint64_t RecordLength;
uint16_t GeneralPurpose0;
uint16_t GeneralPurpose1;
uint16_t LostRecords;
uint16_t LostCycles;

}

The complete record header structure, after parsing the metadata from a disk streaming acquisition.

Members

RecordStatus (uint8_t)

This member is a 8-bit wide bit field holding status information about the record.

Bit 0
If this bit is set, this header corresponds to data up to and including the end of the record.

When dsu_forced_metadata_interval is set to a value lower than the record length, mul-

tiple headers will be generated and only the last header will have this bit set.

Bit 1
If this bit is set, an overrange / clipping condition occurred.

Bit 2
If this bit is set, the trigger occurred on a rising trigger source edge, otherwise on a falling

edge. Not relevant for all trigger sources.

ADQ Disk Streaming spdevices.com Page 23 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

Bit 4-7
Reserved

UserID (uint8_t)

An 8-bit value that may be set from the development kit.

Channel (uint8_t)

The originating channel, zero based.

DataFormat (uint8_t)

The binary representation used for the record data:

0: 16-bit, 2’s complement representation.

1: 32-bit, 2’s complement representation.

SerialNumber (uint32_t)

The numeric part of the digitzer’s serial number. For example, this field would be set to 9999 for

records acquired by a digitizer with serial number “SPD-09999”.

RecordNumber (uint32_t)

The record number as a 32-bit unsigned value. The first record acquired after starting the data

acquisition will have this field set to zero.

 Important

The record number wraps to zero at the maximum value.

SamplePeriod (int32_t)

The time between two samples, expressed in units of 25 ps on ADQ8 and ADQ7, and 125 ps on

ADQ14.

Timestamp (uint64_t)

The timestamp of the trigger event, expressed in units of 25 ps on ADQ8 and ADQ7, and 125 ps

on ADQ14.

RecordStart (int64_t)

The time between the trigger event and the first sample in the record, expressed in units of 25 ps

on ADQ8 and ADQ7, and 125 ps on ADQ14. This means that the timestamp of the first sample in

the record is the sum of the values of Timestamp and RecordStart.

• A value less than zero implies that the first sample in the record was acquired before the

trigger event occurred (pretrigger).

• A value equal to zero implies that the first sample in the record was acquired precisely when

the trigger event occurred.

• A value greater than zero implies that the first sample in the record was acquired after the

trigger event occurred (trigger delay).

ADQ Disk Streaming spdevices.com Page 24 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

RecordLength (uint64_t)

The length of the record as a 64-bit unsigned value, expressed in units of samples. If dsu_forced_
metadata_interval is set to a value lower than the full record length, the value in this field will

only correspond to the data between the generated metadata.

GeneralPurpose0 (uint16_t)

Contains the state of the FWDSU data path general purpose bits at the start of the record, which

can be controlled via the firmware development kit.

GeneralPurpose1 (uint16_t)

Unused, defaults to zero.

LostRecords (uint16_t)

This value shows the state of a 16-bit counter that, during overflow conditions, will increment by

one every time the end of a record is seen and discarded.

LostCycles (uint16_t)

This value shows the state of a 16-bit counter that, during overflow conditions, will increment by

one every time a datapath clock cycle of data is discarded.

ADQ Disk Streaming spdevices.com Page 25 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

A.2 FWDSU Functions

GetDSUParameters . 26

DSUUpdateDoorbellAddress . 27

FlushDMA . 27

int GetDSUParameters(
uint64_t * BAR_addr,
unsigned int * BAR_size_MiB,
unsigned int * read_size_min,
unsigned int * read_size_max,
unsigned int * nof_endpoints_max,
unsigned int * nof_dsu_ch

)

Retrieve FWDSU-specific information from the digitizer.

Return value

If the operation is successful, 1 is returned. Otherwise, 0 is returned.

Description

This function is used to retrieve information from the FWDSU-enable digitizer which is required to config-

ure ADNVDS and the disks correctly, such as the PCI Express base address where the disks can access

the data from the digitizer.

Parameters

BAR_addr (uint64_t *)

The BAR_addr parameter is a pointer to a 64-bit unsigned integer where the function will store the

PCI Express base address where disk streaming data is made available by the digitizer.

BAR_size_MiB (unsigned int *)

The BAR_size_MiB parameter is a pointer to an unsigned integer where the function will store the

size of its PCI Express address range in mibibytes.

read_size_min (unsigned int *)

The read_size_min parameter is a pointer to an unsigned integer where the minimum read size

will be stored. Disk streaming uses a constant read size of ADNVDS_COMMAND_SIZE which is always
supported, so there is no need to check this value.

read_size_max (unsigned int *)

The read_size_max parameter is a pointer to an unsigned integer where the maximum read size

will be stored. Disk streaming uses a constant read size of ADNVDS_COMMAND_SIZE which is always
supported, so there is no need to check this value.

ADQ Disk Streaming spdevices.com Page 26 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

nof_endpoints_max (unsigned int *)

The nof_endpoints_max parameter is a pointer to an unsigned integer where the number of simul-

taneous active endpoints supported by the digitizer will be stored. This is the total number across

all the digitizer channels, and data and metadata for each channel count as separate endpoints.

nof_dsu_ch (unsigned int *)

The nof_dsu_ch parameter is a pointer to an unsigned integer where the number of disk streaming

channels will be stored. Record data and record metadata will here count as separate channels.

int DSUUpdateDoorbellAddress(
unsigned int endpoint,
unsigned int STE,
uint64_t doorbell_address

)

Set the doorbell register address.

Return value

If the operation is successful, 1 is returned. Otherwise, 0 is returned.

Description

The doorbell register is used by the FWDSU firmware to let the disks know when more data is available

for reading. It needs to be initially set to the first disk (or disks, if interleaving is enabled) in the disk

sequence, which is done by the user. It also needs to be updated when switching to the next disk in the

sequence, which is handled by ADNVDS automatically.

Parameters

endpoint (unsigned int)

The endpoint number. Each channel has two endpoints (data and metadata) in each in-

terleaved disk. The index value is therefore in the range of 0 to number_of_channels *
number_of_interleaved_disks * 2.

STE (unsigned int)

Reserved for internal use by ADNVDS.

doorbell_address (uint64_t)

The address to the doorbell register. For initial setup, this can be retrieved from ADNVDS via the

function adnvds_wr_get_ADQ_DSU_setup_params.

int FlushDMA()

Force the completion of any partially filled transfer and stop the acquisition.

Return value

If the operation is successful, 1 is returned. Otherwise, 0 is returned.

ADQ Disk Streaming spdevices.com Page 27 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

Description

Calling this function forces any partially filled transfer buffers to fill up and immediately be parsed by the

API, and also stops the data acquisition. For disk streaming enabled channels, it will force any incomplete

NVME I/O command to be padded with zeroes and transferred to disk. For any record currently in

progress it will also force output of the record metadata.

ADQ Disk Streaming spdevices.com Page 28 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

A.3 Metadata Parsing Functions

ADQData_Create . 29

ADQData_InitPacketStream . 29

ADQData_ParseDiskStreamHeaders . 30

int ADQData_Create(
void ** pref

)

Create an ADQData parser.

Return value

If the operation is successful, 1 is returned. Otherwise, 0 is returned.

Description

Create an ADQData parser.

Parameters

pref (void **)

A pointer to a void* where the reference to the ADQData parser will be stored.

int ADQData_InitPacketStream(
void * ref,
void * device_struct,
const char * filename

)

Initialize an ADQData parser with information about the data acquisition.

Return value

If the operation is successful, 1 is returned. Otherwise, 0 is returned.

Description

Initialize an ADQData parser with information about the digitizer and the data acquisition. The informa-

tion is required to successfully generate the complete record headers, and can be found in the dataset

structure on the disk.

Parameters

ref (void *)
A reference to an ADQData parser, created via ADQData_Create().

device_struct (void *)

A device information structure, which can be found in the disk dataset, under adnvds_rd_data_set->adqdata_device_struct

ADQ Disk Streaming spdevices.com Page 29 of 30

https://www.spdevices.com

Classification Revision

Public A

Document ID Print date

22-2761 2022-06-10

filename (const char *)
Not used, set to NULL.

int ADQData_ParseDiskStreamHeaders(
void * ref,
void * stored_headers_buffer,
unsigned int nof_stored_headers,
void * target_headers_buffer,
unsigned int * headers_added,
unsigned int channel_id

)

Convert an array of DSU7MetadataRaw into DSU7RecordHeader.

Return value

If the operation is successful, 1 is returned. Otherwise, 0 is returned.

Description

Convert an array of DSU7MetadataRaw into DSU7RecordHeader.

Parameters

ref (void *)
A reference to an ADQData parser, created via ADQData_Create().

stored_headers_buffer (void *)

A pointer to an array of DSU7MetadataRaw.

nof_stored_headers (unsigned int)

The number of DSU7MetadataRaw entries in the stored_headers_buffer array.

target_headers_buffer (void *)

A pointer to a memory region where the resulting array of DSU7RecordHeader will be stored. The

memory must be allocated prior to calling this function.

headers_added (unsigned int *)

A pointer to an unsigned int where the number of successfully generated DSU7RecordHeader en-

tries will be stored.

channel_id (unsigned int)

The index of the channel, zero-based. This can be retrieved from the adnvds_rd_data_set.

ADQ Disk Streaming spdevices.com Page 30 of 30

https://www.spdevices.com

Worldwide Sales and Technical Support

spdevices.com

Teledyne SP Devices Corporate Headquarters

Teknikringen 8D

SE-583 30 Linköping

Sweden

Phone: +46 (0)13 645 0600

Fax: +46 (0)13 991 3044

Email: spd_info@teledyne.com

Copyright © 2022 Teledyne Signal Processing Devices Sweden AB

All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.

https://spdevices.com
mailto:spd_info@teledyne.com

	Introduction
	Definitions and Abbreviations

	Overview
	ADQAPI
	ADNVDS
	Installation
	Windows
	Linux
	Firmware

	Data Flow
	Hardware support

	Data acquisition
	Monitoring channels
	Disk streaming data and metadata
	Disk sequencing
	Disk interleaving
	Overflow conditions
	Parameter differences relative to standard firmware
	Data acquisition parameters
	Data transfer parameters
	Data readout parameters

	Disk streaming example
	Disk reading
	Disk read example
	Metadata parsing

	ADQAPI Reference
	Structures
	FWDSU Functions
	Metadata Parsing Functions

