Daisy Chain Trigger Mechanism
In high-speed, multi-digitizer systems, distributing trigger signals with precision is critical to maintaining synchronization and data integrity. Traditional methods of splitting trigger signals often introduce timing mismatches and jitter, especially at gigahertz sampling rates.
To overcome these limitations, our systems implement a Daisy Chain Trigger Mechanism. In this configuration, a single primary digitizer receives the external trigger and then propagates it digitally to subsequent digitizers in a chain. This approach eliminates the fan-out problem and ensures consistent timing across all devices, achieving trigger timing precision better than 50 picoseconds even in large-scale systems.
By combining this mechanism with a shared 10 MHz reference clock distributed to all boards, we maintain a unified time base and enable synchronized data acquisition across hundreds of channels. This is essential for applications requiring ultra-precise timing, such as radar, fusion diagnostics, and high-energy physics experiments.
For a deeper dive into our synchronization and triggering technologies, visit our Multi-Channel Data Acquisition page.